Project description:Recent progress in unbiased metagenomic next-generation sequencing (mNGS) allows simultaneous examination of microbial and host genetic material in a single test. Leveraging affordable bronchoalveolar lavage fluid (BALF) mNGS data, we employed machine learning to create a diagnostic approach distinguishing lung cancer from pulmonary infections, conditions prone to misdiagnosis in clinical settings. This prospective study analyzed BALF-mNGS data from lung cancer and pulmonary infection patients, delineating differences in DNA/RNA microbial composition, bacteriophage abundances, and host responses, including gene expression, transposable element levels, immune cell composition, and tumor fraction derived from copy number variation (CNV). Integrating these metrics into a host/microbe metagenomics-driven machine learning model (Model VI) demonstrated robustness, achieving an AUC of 0.87 (95% CI = 0.857-0.883), sensitivity = 73.8%, and specificity = 84.5% in the training cohort, and an AUC of 0.831 (95% CI = 0.819-0.843), sensitivity = 67.1%, and specificity = 94.4% in the validation cohort for distinguishing lung cancer from pulmonary infections. The application of a rule-in and rule-out strategy-based composite predictive model significantly enhances accuracy (ACC) in distinguishing between lung cancer and tuberculosis (ACC=0.913), fungal infection (ACC=0.955), and bacterial infection (ACC=0.836). These findings highlight the potential of cost-effective mNGS-based analysis as a valuable tool for early differentiation between lung cancer and pulmonary infections, offering significant benefits through a single comprehensive testing.
2024-01-08 | GSE252118 | GEO
Project description:Metagenomic Next-Generation Sequencing (mNGS) of Clinical Samples
| PRJNA588503 | ENA
Project description:data of pleural effusion metagenomic next-generation sequencing (mNGS)
| PRJNA1085983 | ENA
Project description:Metagenomic next-generation sequencing (mNGS) of the chicken ileum and cecum
Project description:The method DFI-seq was developed to enable identification of differentially expressed genes in uropathogenic E. coli strain UTI89 during growth in human urine and in bladder epithelial cells. By utilising this new method, the aim was to identify novel virulence genes in UTI89. DFI-seq is a combination of differential fluorescence induction (DFI) with next-generation sequencing. DFI-seq was compared to DFI by analysing gene expression of UPEC in human urine and thereby confirming that DFI-seq gives a better overview of gene expression. DFI-seq was hereafter used to look at gene expression in UTI89 while infecting bladder epithelial cells. We demonstrate the usefulness of DFI-seq for identification of genes required for optimal growth of UPEC in human urine, as well as potential virulence genes upregulated during infection of bladder epithelial cells. DFI-seq holds potential for the study of bacterial gene expression in live-animal infection systems.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:<p>Despite improved diagnostics, pulmonary pathogens in immunocompromised children frequently evade detection, leading to significant mortality. In this study, we performed RNA and DNA-based metagenomic next generation sequencing (mNGS) on 41 lower respiratory samples collected from 34 children. We identified a rich cross-domain pulmonary microbiome containing bacteria, fungi, RNA viruses, and DNA viruses in each patient. Potentially pathogenic bacteria were ubiquitous among samples but could be distinguished as possible causes of disease by parsing for outlier organisms. Potential pathogens were detected in half of samples previously negative by clinical diagnostics. Ongoing investigation is needed to determine the pathogenic significance of outlier microbes in the lungs of immunocompromised children with pulmonary disease. Metatranscriptomic (RNA) sequencing libraries are reported in the manuscript and are included for this release.</p>