Project description:Plant cuticles have attracted attention because they can be used to produce hydrophobic films as models for novel biopolymers. Usually, cuticles are obtained from agroresidual waste. To find new renewable natural sources to design green and commercially available bioplastics, fruits of S. aculeatissimum and S. myriacanthum were analyzed. These fruits are not used for human or animal consumption, mainly because the fruit is composed of seeds. Fruit peels were object of enzymatic and chemical methods to get thick cutins in good yields (approximately 77% from dry weight), and they were studied by solid-state resonance techniques (CPMAS 13C NMR), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and direct injection electrospray ionization mass spectrometry (DIESI-MS) analytical methods. The main component of S. aculeatissimum cutin is 10,16-dihydroxypalmitic acid (10,16-DHPA, 69.84%), while S. myriacanthum cutin besides of 10,16-DHPA (44.02%); another two C18 monomers: 9,10,18-trihydroxy-octadecanoic acid (24.03%) and 18-hydroxy-9S,10R-epoxy-octadecanoic acid (9.36%) are present. The hydrolyzed cutins were used to produce films demonstrating that both cutins could be a potential raw material for different biopolymers.
Project description:Low temperature is an important abiotic stress in plant growth and development, especially for thermophilic plants. Eggplants are thermophilic vegetables, although the molecular mechanism of their response to cold stress remains to be elucidated. MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that play an essential role during plant development and stress responses. Although the role of many plant miRNAs in facilitating chilling tolerance has been verified, little is known about the mechanisms of eggplant chilling tolerance.Here, we used high-throughput sequencing to extract the miRNA and target genes expression profiles of Solanum aculeatissimum (S. aculeatissimum) under low temperature stress at different time periods(0 h, 2 h, 6 h, 12 h, 24 h). Differentially regulated miRNAs and their target genes were analyzed by comparing the small RNA (sRNA) and miRBase 20.0 databases using BLAST or BOWTIE, respectively. Fifty-six down-regulated miRNAs and 28 up-regulated miRNAs corresponding to 220 up-regulated mRNAs and 94 down-regulated mRNAs, respectively, were identified in S. aculeatissimum. Nine significant differentially expressed miRNAs and twelve mRNAs were identified by quantitative Real-time PCR and association analysis, and analyzed for their GO function enrichment and KEGG pathway association.In summary, numerous conserved and novel miRNAs involved in the chilling response were identified using high-throughput sequencing, which provides a theoretical basis for the further study of low temperature stress-related miRNAs and the regulation of cold-tolerance mechanisms of eggplant at the miRNA level.