Project description:Purpose: Pseudomonas aeruginosa is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). We provide an insight to the DNA auxotrophy of P. aeruginosa PASS4 isolate. Better understanding of P. aeruginosa adaptations in the CF lung environment can have a great impact in the development of specialised treatment regimes aimed at the eradications of P. aeruginosa infections. Methods: P. aeruginosa strains PAO1 and PASS4 were grown in minimal medium with either L-Asparagine or DNA as a carbon source, in biological triplicates. RNA was extracted and sequenced on Illumina HiSeq 1000 platform. The sequence reads that passed quality filters were analyzed using EdgePro and DESeq packages, as well as the Rockhopper tool. Results: We mapped > 10 million paired sequence reads per sample to the genome of P. aeruginosa PAO1 and identified a total of 576 genes differentially expressed by PASS4 when grown in DNA (P value < 0.01, log2 fold-change 1< to < -1), with 322 genes upregulated and 254 genes downregulated. There were a total of 423 genes differentially expressed by PAO1 when grown in DNA (P value < 0.01, log2 fold-change 1< to <-1), with 359 genes upregulated and 64 genes downregulated . A total of 129 transcripts displayed similar expression patterns in both organisms, with 112 being upregulated and 17 down-regulated. Conclusions: Our study identified that P. aeruginosa PASS4 was a purine auxotroph. Purine auxotropy may represent a viable microbial strategy for adaptation to DNA rich environments such as the CF lung.
Project description:Purpose: The goal of this study is to compare endothelial small RNA transcriptome to identify the target of OASL under basal or stimulated conditions by utilizing miRNA-seq. Methods: Endothelial miRNA profilies of siCTL or siOASL transfected HUVECs were generated by illumina sequencing method, in duplicate. After sequencing, the raw sequence reads are filtered based on quality. The adapter sequences are also trimmed off the raw sequence reads. rRNA removed reads are sequentially aligned to reference genome (GRCh38) and miRNA prediction is performed by miRDeep2. Results: We identified known miRNA in species (miRDeep2) in the HUVECs transfected with siCTL or siOASL. The expression profile of mature miRNA is used to analyze differentially expressed miRNA(DE miRNA). Conclusions: Our study represents the first analysis of endothelial miRNA profiles affected by OASL knockdown with biologic replicates.