Project description:Acetaminophen is a widely used antipyretic and analgesic drug, and its overdose is the leading cause of drug-induced acute liver failure. This study aimed to investigate the effect and mechanism of Lacticaseibacillus casei Shirota (LcS), an extensively used and highly studied probiotic, on acetaminophen-induced acute liver injury. C57BL/6 mice were gavaged with LcS suspension or saline once daily for 7 days before the acute liver injury was induced via intraperitoneal injection of 300 mg/kg acetaminophen. The results showed that LcS significantly decreased acetaminophen-induced liver and ileum injury, as demonstrated by reductions in the increases in aspartate aminotransferase, total bile acids, total bilirubin, indirect bilirubin and hepatic cell necrosis. Moreover, LcS alleviated the acetaminophen-induced intestinal mucosal permeability, elevation in serum IL-1α and lipopolysaccharide, and decreased levels of serum eosinophil chemokine (eotaxin) and hepatic glutathione levels. Furthermore, analysis of the gut microbiota and metabolome showed that LcS reduced the acetaminophen-enriched levels of Cyanobacteria, Oxyphotobacteria, long-chain fatty acids, cholesterol and sugars in the gut. Additionally, the transcriptome and proteomics showed that LcS mitigated the downregulation of metabolism and immune pathways as well as glutathione formation during acetaminophen-induced acute liver injury. This is the first study showing that pretreatment with LcS alleviates acetaminophen-enriched acute liver injury, and it provides a reference for the application of LcS.
Project description:Analysis of breast cancer survivors' gut microbiota after lifestyle intervention, during the COVID-19 lockdown, by 16S sequencing of fecal samples.
Project description:Background & Aims: Non-alcoholic fatty liver disease (NALFLD)-associated changes in gut microbiota are important drivers of disease progression toward fibrosis. Therefore, reversing microbiota alterations could ameliorate NAFLD progression. Oat beta-glucan, a non-digestible polysaccharides, has shown promising therapeutic effects on hyperlipidemia associated with NAFLD, but its impact on gut microbiota and most importantly NAFLD fibrosis remains unknown. Methods: We performed detailed metabolic phenotyping including body composition, glucose tolerance, and lipid metabolism as well as comprehensive characterization of the gut-liver axis in a western-style diet (WSD)-induced model of NAFLD and assessed the effect of a beta-glucan intervention on early and advanced liver disease. Gut microbiota was modulated using broad-spectrum antibiotic (Abx) treatment. Results: Oat beta-glucan supplementation did not affect WSD-induced body weight gain, glucose intolerance, and the metabolic phenotype remained largely unaffected. Interestingly, oat beta-glucan dampened NAFLD inflammation, associated with significantly reduced monocyte-derived macrophages (MoMFs) infiltration, fibroinflammatory gene expression, and strongly reduced fibrosis development. Mechanistically, this protective effect was not mediated by changes in bile acid composition or signaling, but was dependent on gut microbiota and was lost upon Abx treatment. Specifically, oat beta-glucan partially reversed unfavorable changes in gut microbiota, resulting in an expansion of protective taxa, including Ruminococcus, and Lactobacillus followed by reduced translocation of TLR ligands. Conclusions: Our findings identify oat beta-glucan as a highly efficacious food supplement that dampens inflammation and fibrosis development in diet-induced NAFLD. These results, along with its favorable dietary profile, suggest that it may be a cost-effective and well-tolerated approach to preventing NAFLD progression and should be assessed in clinical studies.
Project description:The aim of this study was to assess whether chronic treatment with RPV can modulate the progression of chronic liver disease, especially of non-alcoholic fatty liver disease (NAFLD), through a nutritional model in wild-type mice Mice were daily treated with RPV (p.o.) and fed with normal or high fat diet during 3 months to induce fatty liver disease
Project description:Background: Probiotic-like bacteria treatment has been described to be associated with gut microbiota modifications. Goal: To decipher if the effects of the tested probiotic-like bacteria are due to the bacteria itself or due to the effects of the bacteria on the gut microbiota. Methodology: In this study, gut microbiota has been analyzed from feces samples of subjects with metabolic syndrome and treated with one of the 2 tested probiotic-like bacteria or with the placebo during 3months.
Project description:The indigenous human gut microbiota is a major contributor to the human superorganism with established roles in modulating nutritional status, immunity, and systemic health including diabetes and obesity. The complexity of the gut microbiota consisting of over 1012 residents and approximately 1000 species has thus far eluded systematic analyses of the precise effects of individual microbial residents on human health. In contrast, health benefits have been shown upon ingestion of certain so-called probiotic Lactobacillus strains in food products and nutritional supplements, thereby providing a unique opportunity to study the global responses of a gut-adapted microorganism in the human gut and to identify the molecular mechanisms underlying microbial modulation of intestinal physiology, which might involve alterations in the intestinal physico-chemical environment, modifications in the gut microbiota, and/or direct interaction with mucosal epithelia and immune cells. Here we show by transcriptome analysis using DNA microarrays that the established probiotic bacterium, L. plantarum 299v, adapts its metabolic capacity in the human digestive tract for carbohydrate acquisition and expression of exo-polysaccharide and proteinaceous cell surface compounds. This report constitutes the first application of global gene expression profiling of a gut-adapted commensal microorganism in the human gut. Comparisons of the transcript profiles to those obtained for L. plantarum WCFS1 in germ-free mice revealed conserved L. plantarum responses indicative of a core transcriptome expressed in the mammalian gut and provide new molecular targets for determining microbial-host interactions affecting human health. Hybridization of the samples against a common reference of gDNA isolated from L. plantarum 299v
Project description:FLORINASH - The role of intestinal microflora in non-alcoholic fatty liver disease (NAFLD) EU FP7-HEALTH, project number 241913<br>Florinash examined the role on the gut microbiota in NAFLD. Metagenomic, proteomic, metabolomic and transcriptomic data were integrated to give provide a systems biology approach to disease-associated studies. Liver biopsies were obtained from patients undergoing bariatric surgery; one was used to diagnose NAFLD, the other was used to examine the host transcriptome in NAFLD. This dataset is part of the TransQST collection.
Project description:Modulation of gut microbiota through probiotic supplementation is an interesting strategy to prevent obesity We use microarrays to study the global genome expression of C. elegans fed with the probiotic strain Bifidobacterium animalis sbsp. lactis CECT 8145
Project description:Non-alcoholic fatty liver disease (NAFLD) is rapidly becoming the most common liver disease worldwide, yet the pathogenesis of NAFLD is only partially understood. Here, we investigated the role of the gut bacteria in NAFLD by stimulating the gut bacteria via feeding mice the fermentable dietary fiber guar gum and suppressing the gut bacteria via chronic oral administration of antibiotics. Guar gum feeding profoundly altered the gut microbiota composition, in parallel with reduced diet-induced obesity and improved glucose tolerance. Strikingly, despite reducing adipose tissue mass and inflammation, guar gum enhanced hepatic inflammation and fibrosis, concurrent with markedly elevated plasma and hepatic bile acid levels. Consistent with a role of elevated bile acids in the liver phenotype, treatment of mice with taurocholic acid stimulated hepatic inflammation and fibrosis. In contrast to guar gum, chronic oral administration of antibiotics effectively suppressed the gut bacteria, decreased portal secondary bile acid levels, and attenuated hepatic inflammation and fibrosis. Neither guar gum or antibiotics influenced plasma lipopolysaccharide levels. In conclusion, our data indicate a causal link between changes in gut microbiota and hepatic inflammation and fibrosis in a mouse model of NAFLD, possibly via alterations in bile acids.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.