Project description:Dipterocarpus turbinatus Gaertn. F., naturally distributes in Southern China, which is an elite natural tree with high economic and medicinal value. In study, all chloroplast (cp) genome of Dipterocarpus turbinatus Gaertn. F. was assembled and characterized based on Illumina pair-end sequencing data. The complete chloroplast genome length was 152,279 bp. It contained a large (LSC, 83,862 bp) and a small (SSC, 20,215 bp) single copy region, separated by a pair of inverted repeats of 24,101 bp (IRs). The overall GC content of genome was 37.3%, the corresponding values of LSC, SSC, and IR regions were 35.3, 31.6, and 43.2%, respectively. There were 128 genes in the genome including 84 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. Among all genes, 14 genes contain a single intron and 1 gene has two introns. The result showed that Dipterocarpus turbinatus Gaertn. F. was closely related to Vatica mangachapoi.
| S-EPMC7707500 | biostudies-literature
Project description:Complete chloroplast genome of Dipterocarpus retusus
Project description:Anthropogenic disturbances in tropical forests often affect the genetic diversity of a species. Dipterocarpus condorensis is an endangered species in the tropical forests of south-eastern Vietnam, both from its over-exploitation and habitat loss. Therefore, knowledge of population genetic diversity and population structure is essential for identifying the species conservation measures. In the present study, we evaluated genetic diversity and population structure using nine microsatellites for 183 individual trees from eight populations, representing the distribution range of D. condorensis in Vietnam. Two clustering approaches (Bayesian analysis and discriminant analysis of principal components) revealed that all studied individuals clustered into three genetic groups, which were related to gene flow across the range of D. condorensis in the lowland tropical forests of south-eastern Vietnam. Limited gene flow was implicated in anthropogenic disturbance. Genetic differentiation among populations was relatively low (the Weir and Cockerham index of 0.122 and the Hedrick index of 0.149) and showed significant differentiation. The genetic variability of the populations was low (H O = 0.298 and H E = 0.324), which suggested the negative effects of habitat degradation and over-exploitation. Our studies also determined that D. condorensis populations can have undergone recent bottlenecks. We recommend conservation activities for this species based on these results.
Project description:Dipterocarpus retusus Blume is an endangered species on the IUCN Red List. In this study, we reported the complete chloroplast (cp) genome of D. retusus (GenBank accession number: OP271853). The cp genome was 154,303 bp long, with a large single-copy (LSC) region of 85,586 bp and a small single-copy (SSC) region of 20,273 bp separated by a pair of inverted repeats (IRs) of 24,222 bp. It encodes 128 genes, including 84 protein-coding genes, 36 tRNA genes, and eight ribosomal RNA genes. We also reconstructed the cp genome phylogeny of Dipterocarpus, which indicated D. retusus was closely related with the sympatric species D. gracilis. This study may contribute valuable information to the phylogenetic relationships within the genus Dipterocarpus.