Project description:Cotton (Gossypium hirsutum) is the major contributor of feedstock for the fabric industry and thus building genomic resources in cotton such as this study are a way to understand the cotton plant's biology. Cotton cultivars that suppress PHYA1D (PhyA1 homeolog on the D genome of a tetraploid) exhibit early-flowering, increased fiber length and increased seed yield. In our proposed study, flower buds (also called squares) samples were collected from control (Croker 312 wildtype line) and RNAi lines carrying the PhyA1D suppression. RNA samples from the two lines including three biological replicates were subjected to RNA-seq sequencing to elucidate the transcriptome profile.
Project description:The aim of the present study is to list the genes involved in cotton (G. arboreum) leaf epicuticular wax production and deposition. For this purpose differentially expressed genes (especially, down-regulated in wax deficient mutant plant) in wild and epicuticular wax mutant (Gawm3) plants were founded through cDNA microarray, developed from the wild plant leaves.
Project description:This study was initiated with the objective of identifying the anther/tapetum specific promoters from cotton floral buds. Cotton is an important commercial crop. Hybrid cotton varieties are developed to obtain improved yield and fiber quality. Most of the hybrid seed production in cotton is carried out by hand emasculation, which requires large amount of manpower, resulting in high cost of hybrid seed. We are developing barnase-barstar based male sterility system, which would be a better alternative for hybrid development. The tapetum specific promoters are main requirement for such a system. The study was thus carried out to identify genes expressed in the anthers.
Project description:Upland cotton (Gossypium hirsutum L.) is one of the world’s most important fiber crops, accounting for more than 90% of all cotton production. While their wild progenitors have relatively short and coarse, often tan-colored fibers, modern cotton cultivars possess longer, finer, stronger, and whiter fiber. In this study, the wild and cultivated cottons (YU-3 and TM-1) selected show significant differences on fibers at 10 day post-anthesis (DPA), 20 DPA and mature stages at the physiological level. In order to explore the effects of domestication, reveal molecular mechanisms underlying these phenotypic differences and better inform our efforts to further enhance cotton fiber quality, an iTRAQ-facilitated proteomic methods were performed on developing fibers. There were 6990 proteins identified, among them 336 were defined as differentially expressed proteins (DEPs) between fibers of wild versus domesticated cotton. The down- or up-regulated proteins in wild cotton were involved in Phenylpropanoid biosynthesis, Zeatin biosynthesis, Fatty acid elongation and other processes. Association analysis between transcroptome and proteome showed positive correlations between transcripts and proteins at both 10 DPA and 20 DPA. The difference of proteomics had been verified at the mRNA level by qPCR, also at physiological and biochemical level by POD activity determination and ZA content estimation. This work corroborate the major pathways involved in cotton fiber development and demonstrate that POD activity and zeatin content have a great potential related to fiber elongation and thickening.