Project description:Hearing mediates many behaviors critical for survival in echolocating bats, including foraging and navigation. Although most mammals are susceptible to progressive age-related hearing loss, the evolution of biosonar, which requires the ability to hear low-intensity echoes from outgoing sonar signals, may have selected against the development of hearing deficits in bats. Many echolocating bats exhibit exceptional longevity and rely on acoustic behaviors for survival to old age; however relatively little is known about the aging bat auditory system. In this study, we used DNA methylation to estimate the ages of wild-caught big brown bats (Eptesicus fuscus) and measured hearing sensitivity in young and aging bats using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). We found no evidence for hearing deficits in bats up to 12.5 years of age, demonstrated by comparable thresholds and similar ABR and DPOAE amplitudes across age groups. We additionally found no significant histological evidence for cochlear aging, with similar hair cell counts, afferent, and efferent innervation patterns in young and aging bats. Here we demonstrate that big brown bats show minimal evidence for age-related hearing loss and therefore represent informative models for investigating mechanisms that may preserve hearing function over a long lifetime.
Project description:Vesper bats (family Vespertilionidae) experienced a rapid adaptive radiation beginning around 36 mya that resulted in the second most species rich mammalian family. Coincident with that radiation was an initial burst of DNA transposon activity that has continued into the present. Deep sequencing of small RNAs from the vespertilionid, Eptesicus fuscus, as well as dog and horse revealed that substantial numbers of novel bat miRNAs are derived from DNA transposons unique to vespertilionids. In fact, 35.9% of Eptesicus-specific miRNAs derive from DNA transposons compared to 2.2 and 5.9% of dog- and horse-specific miRNAs, respectively and targets of several miRNAs are identifiable. Timing of the DNA transposon expansion and the introduction of novel miRNAs coincides remarkably well with the rapid diversification of the family Vespertilionidae. We suggest that the rapid and repeated perturbation of regulatory networks by the introduction of many novel miRNA loci was a factor in the rapid radiation. A testicular tissue sample from dog, horse, and two different Eptesicus fuscus individuals. Four samples total.