Project description:A small-scale whole genome microarray study of gene expression in human native nasal epithelial cells from F508del-CFTR homozygous CF patients and non-CF controls. We used the custom designed Affymetrix HsAirwaya520108F Arrays to compare gene expression in 5 CF and 5 non CF nasal epithelial cell samples.
Project description:A small-scale whole genome microarray study of gene expression in human native nasal epithelial cells from F508del-CFTR homozygous CF patients and non-CF controls. We used the custom designed Affymetrix HsAirwaya520108F Arrays to compare gene expression in 5 CF and 5 non CF nasal epithelial cell samples. We analysed a total of 10 samples (5 CF and 5 non CF). The CF group contained 2 males and 3 females, with an average age of 14 years and an average of 6% inflammatory cells per sample, and the non CF group contained 3 males and 2 females with an average age of 14.8 years and an average of 4.7% inflammatory cells.
Project description:We did bulk RNA sequencing in newborn cystic fibrosis (CF) and non-CF pig kidney. We compared kidney gene expression profiling between non-CF and CF pigs. RNA sequencing results showed that there is not significant difference between non-CF and CF in terms of gene expression, suggesting that CFTR knockout does not affect kidney development in newborn pigs.
Project description:Cystic fibrosis (CF), a genetic disorder, is characterized by chronic lung disease. Small non-coding RNAs are key regulators of gene expression and participate in various processes, which are dysregulated in CF; however, they remain poorly studied. Here, we determined the complete microRNAs (miRNAs) expression pattern in three CF ex-vivo models. The miRNA profiles of air-liquid interface cultures of airway epithelia (bronchi, nasal cells, and nasal polyps) samples from patients with CF and non-CF controls were obtained by deep sequencing. Compared with non-CF controls, several miRNAs were deregulated in CF samples, for instance miR-181a-5p and the miR-449 family were upregulated. Moreover, mature miRNAs often showed variations (i.e., isomiRs) relative to their reference sequence, such as miR-101, suggesting that miRNAs consist of heterogeneous repertoires of multiple isoforms with different effects on gene expression. Analysis of miR-181a-5p and miR-101-3p roles indicated that they regulate the expression of WISP1, a key component of cell proliferation/migration programs. We showed that miR-101 and miR-181a-5p participated in aberrant recapitulation of wound healing programs by controlling WISP1 mRNA and protein level. Our miRNA expression data bring new insights into CF physiopathology and define new potential therapeutic targets in CF