Project description:Cancer associated fibroblasts (CAF) are a major cellular component of epithelial tumors. In breast cancers in particular these stromal cells have numerous tumorigenic effects in part due to their acquisition of a myofibroblastic phenotype. Breast CAFs (bCAFs) typically express MCL-1. We show here that pharmacological inhibition or knock down of this regulator of mitochondrial integrity in primary bCAFs directly derived from human samples mitigates myofibroblastic features. This decreases expression of genes involved in actomyosin organization and contractility (associated with a cytoplasmic retention of the transcriptional regulator, Yes-Associated Protein - YAP) and decreases bCAFs ability to promote cancer cells invasion in 3D co-culture assays. Our findings underscore the usefulness of targeting MCL-1 in breast cancer ecosystems, not only to favor death of cancer cells but also to counteract the tumorigenic activation of fibroblasts with which they co-evolve.
Project description:The expression of TWEAK and Fn14 was increased in early skin lesions of SSc patients. Fn14 expression on human dermal fibroblasts is significantly increased after stimulation with serum from patients with systemic sclerosis. The interplay between TWEAK and Fn14 is pivotal in the fibrotic progression of various autoimmune diseases. These observations implicate the TWEAK/Fn14 signaling pathway may as a critical player in the pathological advancement of systemic sclerosis; however, the precise underlying mechanisms require further clarification. Thus, human dermal fibroblasts were stimulated by serum from systemic sclerosis patients, and with or without the addition of Fn14 antagonists. We then assessed the antifibrotic effects of this antagonist through RNA sequencing, and preliminary exploration of possible molecular mechanisms.
Project description:To determine the global transcriptome changes in mantle cell lymphoma cells following treatment with the BET bromodomain antagonist, JQ1 Mantle Cell Lymphoma (MCL) cells exhibit increased B cell receptor and NFkB activities. The BET protein BRD4 is essential for the transcriptional activity of NFkB. Here, we demonstrate that treatment with the BET protein bromodomain antagonist (BA) JQ1 attenuates MYC and CDK4/6, inhibits the nuclear RelA levels and the expression of NFκB target genes including Brutonâs Tyrosine Kinase (BTK) in MCL cells. While lowering the levels of the anti-apoptotic BCL2 family proteins, BA treatment induces the pro-apoptotic protein BIM and exerts dose-dependent lethality against cultured and primary MCL cells. Co-treatment with BA and the BTK inhibitor ibrutinib synergistically induces apoptosis of MCL cells. Compared to each agent alone, co-treatment with BA and ibrutinib markedly improved the median survival of mice engrafted with the MCL cells. BA treatment also induced apoptosis of the in vitro isolated, ibrutinib-resistant MCL cells which overexpress CDK6, BCL2, Bcl-xL, XIAP and AKT, but lack ibrutinib resistance-conferring BTK mutation. Co-treatment with BA and panobinostat (pan-histone deacetylase inhibitor) or palbociclib (CDK4/6 inhibitor) or ABT-199 (BCL2 antagonist) synergistically induced apoptosis of the ibrutinib-resistant MCL cells. These findings highlight and support further in vivo evaluation of the efficacy of the BA-based combinations with these agents against MCL, including ibrutinib-resistant MCL. MO2058 cells treated with vehicle, 250 nM or 1000 nM JQ1 for 8 hours. Samples were acquired and analyzed in duplicate.
Project description:To determine the global transcriptome changes in mantle cell lymphoma cells following treatment with the BET bromodomain antagonist, JQ1 Mantle Cell Lymphoma (MCL) cells exhibit increased B cell receptor and NFkB activities. The BET protein BRD4 is essential for the transcriptional activity of NFkB. Here, we demonstrate that treatment with the BET protein bromodomain antagonist (BA) JQ1 attenuates MYC and CDK4/6, inhibits the nuclear RelA levels and the expression of NFκB target genes including Bruton’s Tyrosine Kinase (BTK) in MCL cells. While lowering the levels of the anti-apoptotic BCL2 family proteins, BA treatment induces the pro-apoptotic protein BIM and exerts dose-dependent lethality against cultured and primary MCL cells. Co-treatment with BA and the BTK inhibitor ibrutinib synergistically induces apoptosis of MCL cells. Compared to each agent alone, co-treatment with BA and ibrutinib markedly improved the median survival of mice engrafted with the MCL cells. BA treatment also induced apoptosis of the in vitro isolated, ibrutinib-resistant MCL cells which overexpress CDK6, BCL2, Bcl-xL, XIAP and AKT, but lack ibrutinib resistance-conferring BTK mutation. Co-treatment with BA and panobinostat (pan-histone deacetylase inhibitor) or palbociclib (CDK4/6 inhibitor) or ABT-199 (BCL2 antagonist) synergistically induced apoptosis of the ibrutinib-resistant MCL cells. These findings highlight and support further in vivo evaluation of the efficacy of the BA-based combinations with these agents against MCL, including ibrutinib-resistant MCL.
Project description:Transcriptional profiling of the human breast cancer cells and primary breast cancer-associated fibroblasts exposed to compressive stress. Four subtypes of breast cancer cells (BT-474, MCF7, SK-BR-3, MDA-MB-231) and four cases of primary breast cancer-associated fibroblasts (CAF1, CAF2, CAF3, and CAF4) were exposed to a static compressive stress for 24 h.
Project description:Breast cancer is still the most common type of cancer in women; an important role in carcinogenesis is actually attributed to cancer-associated fibroblasts. In this study we investigated whether it is possible to assess the functional state of cancer-associated fibroblasts through tumor tissue proteome profiling. Tissue proteomics was performed on tumor-central, tumor-near and tumor-distant biopsy sections from breast adenocarcinoma patients, which allowed us to identify 2074 proteins. Data were interpreted referring to reference proteome profiles generated from primary human mammary fibroblasts comprising 4095 proteins. These cells were analyzed in quiescent cell state, as well as after in vitro treatment with TGFβ or IL-1β, stimulating wound healing or inflammatory processes, respectively. Representative for cancer cells, we investigated the mammary carcinoma cell line ZR-75-1, identifying 5212 proteins. Comparison of tissue proteomics data with all those reference profiles revealed predominance of cancer cell-derived proteins within the tumor and fibroblast-derived proteins in the tumor-distant tissue sections. Remarkably, proteins characteristic for acute inflammation were hardly identified in the tissue samples. In contrast, several proteins found by us to be induced by TGFβ in mammary fibroblasts, including fibulin-5, SLC2A1 and MUC18, were positively identified in all tissue samples, with relatively higher abundance in tumor neighboring tissue sections. These findings indicate a predominance of cancer-associated fibroblasts with wound healing activities localized around tumors.
Project description:Breast cancer is a heterogeneous disease for which prognosis and treatment strategies are largely governed by the receptor status (estrogen, progesterone and Her2-neu) of the tumor cells. Gene expression profiling of whole breast tumors further stratifies breast cancer into several molecular subtypes which also co-segregate with the receptor status of the tumor cells. We postulated that cancer associated fibroblasts (CAFs) within the tumor stroma may exhibit subtype specific gene expression profiles and thus contribute to the biology of the disease in a subtype specific manner. Several studies have reported gene expression profile differences between CAFs and normal breast fibroblasts but in none of these studies were the results stratified based on tumor subtypes. To address whether gene expression in breast cancer associated fibroblasts varies between breast cancer subtypes, we compared the gene expression profiles of early passage primary CAFs isolated from twenty human breast cancer samples representing three main subtypes; seven ER+, seven triple negative (TNBC) and six Her2+. We observed significant expression differences between CAFs derived from Her2+ breast cancer and CAFs from TNBC and ER+ cancers, particularly in pathways associated with cytoskeleton and integrin signaling. In the case of Her2+ breast cancer, the signaling pathways found to be selectively up regulated in CAFs may contribute to the more invasive properties and unfavorable prognosis of Her2+ breast cancer. These data demonstrate that in addition to the distinct molecular profiles that characterize the neoplastic cells, CAF gene expression is also differentially regulated in distinct subtypes of breast cancer.
Project description:Normal breast fibroblasts, breast cancer associated fibroblasts, fibroblasts taken at least 2cm from cancer margins and femur-derived human mesenchymal stem cells were profiled for comparative purposes