Project description:The goal of these experiments was to define the targets of Ty3 transposition in Saccharomyces cerevisiae. Ty3 is a retroviruslike element that is found at the transcription initiation site of chromosomal tRNA genes.
Project description:Altering the genetic code for applications in synthetic biology and genetic code expansion involves engineered tRNAs that incorporate amino acids that differ from what is defined by the “standard” genetic code. Since these engineered tRNA variants can be lethal due to proteotoxic stress, regulating their expression is necessary to achieve high levels of the resulting novel proteins. Mechanisms to positively regulate transcription with exogenous activator proteins like those often used to regulate RNA polymerase II (RNAP II) transcribed genes are not applicable to tRNAs as their expression by RNA polymerase III requires elements internal to the tRNA. Here, we show that tRNA expression is repressed by overlapping transcription from an adjacent RNAP II promoter. Regulating the expression of the RNAP II promoter allows inverse regulation of the tRNA. Placing either Gal4 or TetR-VP16 activated promoters downstream of a mistranslating tRNA serine variant that mis-incorporates serine at proline codons in Saccharomyces cerevisiae allows mistranslation at a level not otherwise possible because of the toxicity of the unregulated tRNA. Using mass spectrometry, we determine th frequency of mistranslation in both the induced and repressed conditions of the galactose inducible and tetracycline inducible systems.
Project description:Saccharomyces cerevisiae is an excellent microorganism for industrial succinic acid production, but high succinic acid concentration will inhibit the growth of Saccharomyces cerevisiae then reduce the production of succinic acid. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different genetic backgrounds under different succinic acid stress, we hope to find the response mechanism of Saccharomyces cerevisiae to succinic acid.
Project description:Reprogramming a non-methylotrophic industrial host, such as Saccharomyces cerevisiae, to a synthetic methylotroph reprents a huge challenge due to the complex regulation in yeast. Through TMC strategy together with ALE strategy, we completed a strict synthetic methylotrophic yeast that could use methanol as the sole carbon source. However, how cells respond to methanol and remodel cellular metabolic network on methanol were not clear. Therefore, genome-scale transcriptional analysis was performed to unravel the cellular reprograming mechanisms underlying the improved growth phenotype.