Project description:High-grade gliomas (HGG) are deadly diseases for both adult and pediatric patients. Recently, it has been shown that neuronal activity promotes the progression of multiple subgroups of HGG. However, epigenetic mechanisms that govern this process remain elusive. Here we report that the chromatin remodeler CHD2 regulates neuron-glioma interactions in diffuse midline glioma (DMG) characterized by onco-histone H3.1K27M. Depletion of CHD2 in H3.1K27M DMG cells compromises cell viability and neuron-to-glioma synaptic connections in vitro, neuron-induced proliferation of H3.1K27M HGG DMG cells in vitro and in vivo, activity-dependent calcium transients in vivo, and extends the survival of H3.1K27M DMG-bearing mice. Mechanistically, CHD2 coordinates with the transcription factor FOSL1 to control the expression of axon-guidance and synaptic genes in H3.1K27M DMG cells. Together, our study reveals a mechanism whereby CHD2 controls the intrinsic gene program of the H3.1K27M DMG subtype, which in turn regulates the tumor growth-promoting interactions of glioma cells with neurons.
Project description:Considerable evidence suggests loss of function mutations in the chromatin remodeler, CHD2, contribute to a broad spectrum of human neurodevelopmental disorders. However, it is unknown how CHD2 mutations lead to impaired brain function. Here we report mice with heterozygous mutations in Chd2 exhibit deficits in neuron proliferation and a shift in neuronal excitability that included divergent changes in excitatory and inhibitory synaptic function. Further in vivo experiments show Chd2+/- mice displayed aberrant cortical rhythmogenesis and severe deficits in long-term memory, consistent with phenotypes observed in humans. We identified broad, age-dependent transcriptional changes in Chd2+/- mice, including alterations in neurogenesis, synaptic transmission and disease-related genes. Deficits in interneuron density and memory caused by Chd2+/- were reproduced by Chd2 mutation restricted to a subset of inhibitory neurons and corrected by interneuron transplantation. Our results provide initial insight into how Chd2 haploinsufficiency leads to aberrant cortical network function and impaired memory.
Project description:Genome wide methylation profiling of pediatric low-grade glioma samples (n=151). The Illumina Infinium HumanMethylation850 BeadChip was used (under manufacturer guidelines) to obtain DNA methylation signatures. Samples were exclusively tumors specimen and no normal tissue was included in this analysis.
Project description:Data includes all available Affymetrix SNP data from a cohort of Pediatric malignant glioma samples, isolated from Formalin-fixed Paraffin embedded tissue. No clinical data is available. Copy number analysis of Affymetrix 250K Sty SNP arrays was performed for 28 pediatric malignant gliomas. The VN algorithm was used to generate the reference signal based on 48 Mapping 500k HapMap Trio Dataset template.
Project description:Data includes all available Affymetrix SNP data from a cohort of Pediatric malignant glioma samples, isolated from Formalin-fixed Paraffin embedded tissue. No clinical data is available.
Project description:Chromodomain Helicase DNA-binding Domain 2 (CHD2), as a chromatin remodeling factor, was shown to be involved in the regulation of gene expression in embryonic development, neurodevelopment and myelopoiesis. However, its role in male germ cell development has not been elucidated. Here, we confirmed that CHD2 is abundantly expressed throughout the male germ cells with the highest expression in the spermatocytes of meiosis I. By constructing a heterozygous gene knockout mouse model of Chd2 (Chd2+/-), we demonstrated that CHD2 haploinsufficiency resulted in testicular developmental delay and increased rate of abnormal sperm in mice. DNA damage repair, synapsis and cell proliferation during spermatogenesis are impaired in Chd2+/- mice. In vitro experiments in C18-4 and GC-1 spg cells showed that CHD2 knockdown inhibits spermatogonial self-renewal. Mechanically, CHD2 maintained the enrichment of H3K4me3 in Ccnb1 and Ccnd2 promoter consequently promoting the transcription of Ccnb1 and Ccnd2. In addition, by interacting with cleavage stimulation factor CSTF3, CHD2 binds Oct4, Plzf mRNA and upregulates the expression of OCT4 and PLZF by improving mRNA stability. This is the first time to reveal the role and mechanism of CHD2 in maintaining spermatogonial self-renewal by promoting chromatin activity and mRNA stability in spermatogenesis.