Project description:We sequenced mRNA from 9 liver samples of juvenile largemouth bass (Micropterus salmoides) taken from different lead concentration exposure treatment fish and control fish to investigate the transcriptome and comparative expression profiles of largemouth bass liver undergoing lead exposure.
Project description:This study examines the genomic effects of dieldrin in the hypothalamus of largemouth bass. Dieldrin is an insectide and organic pollutant. Largemouth bass fed diedrin for two months once a day ad libitium; 4 biological replicates for each group
Project description:This SuperSeries is composed of the following subset Series: GSE38738: High contaminant loads in Lake Apopka mesocosms affect the ovarian transcriptome in largemouth bass [April] GSE38773: High contaminant loads in Lake Apopka mesocosms affect the ovarian transcriptome in largemouth bass [January] Refer to individual Series
Project description:This study used an emerging analytical technology (cDNA microarrays) to assess the potential effects of PFC exposure on largemouth bass in TCMA lakes. Microarrays simultaneously measure the expression of thousands of genes in various tissues from organisms exposed to different environmental conditions. From this large data set, biomarkers (i.e., genes that are expressed in response to an exposure to known stressors) and bioindicators (e.g., suites of genes that correspond to changes in organism health) can be simultaneously measured to clarify the relationship between contaminant exposure and organism health. Based on current scientific literature, we hypothesized that gene expression patterns would be altered in fish exposed to PFCs (as compared with fish from reference lakes), and that the magnitude of these changes would correspond to the concentrations of PFCs present throughout TCMA lakes. Patterns of gene expression in largemouth bass observed across the TCMA lakes corresponded closely with PFC concentration. Concentrations of PFCs in largemouth bass varied significantly across the sampled lakes, where the lowest concentrations were found in Steiger and Upper Prior Lakes and the highest concentrations were found in Calhoun and Twin Lakes. Patterns of gene expression were most different (relative to controls) in fish with the highest PFC tissue concentrations, where fish from Twin and Calhoun Lakes were observed to have between 5437 and 5936 differentially expressed genes in liver and gonad tissues. Although gene expression patterns demonstrated a high degree of correlation with PFC concentrations, microarray data also suggest there are likely additional factors influencing gene expression patterns in largemouth bass in TCMA lakes.
Project description:This SuperSeries is composed of the following subset Series: GSE38456: Characterizing gene regulatory networks in the brain of largemouth bass inhabiting rivers containing high levels of methyl-mercury (lab study) GSE38458: Characterizing gene regulatory networks in the brain of largemouth bass inhabiting rivers containing high levels of methyl-mercury (field study) Refer to individual Series
Project description:Intensive aquaculture and environmental changes will inevitably lead to hypoxic stress for largemouth bass (Micropterus salmoides). To better understand the hypoxia responds mechanisms of largemouth bass, we compared the miRNA profile in liver under different environmental DO to determine which miRNAs are most affected during hypoxia. A total of 266 miRNAs were identified, and 84 miRNAs were differentially expressed compared with in control group. GO and KEGG analysis indicated that the miRNAs may play important roles in environment information processing. Specifically, we considered the VEGF signaling pathway, Phosphatidylinositol signaling system and MAPK signaling pathway, the results show that, the 13 miRNAs (miR-15b-5p, miR-30a-3p, miR-133a-3p, miR-19d-5p, miR-1288-3p, miR456, miR-96-5p, miR-23a-3p, miR-23b, miR-214, miR-24, miR-20a-3p and miR-2188-5p) involved in these three pathways are significantly down-regulated during hypoxia stress. And 12 target genes of these miRNAs were showed a higher degree of expression. We found the obvious negative correlation between miRNA and their target mRNAs, providing several miRNA-mRNA interaction networks in largemouth bass in response to hypoxia. Although relatively little information is currently available concerning the biological function of miRNAs identified to date, we strongly suggest that miRNAs play an important role in modulating gene expression involved in the physiological response to hypoxic stress in the fish liver.
Project description:White bass (Morone chrysops) are a popular sportfish throughout the southern United States, and one parent of the commercially successful hybrid striped bass (M. chrysops x M. saxatilis). Currently, white bass are cultured using diets formulated for other carnivorous fish, such as largemouth bass (Micropterus salmoides) or hybrid striped bass and contain a significant percentage of marine fish meal. Since there are no studies regarding the utilization of alternative proteins in this species, we evaluated global gene expression of white bass fed diets in which fish meal was partially or totally replaced by various combinations of soybean meal, poultry by-product meal, canola meal, soy protein concentrate, wheat gluten, or a commercial protein blend (Pro-Cision). Significant differential expressed genes and gene ontology of pairwise comparisons between control diet and each test diet are presented and discussed.
Project description:This study examines the genomic effects of dieldrin in the hypothalamus of largemouth bass. Dieldrin is an insectide and organic pollutant.