Project description:In this study, 3,869 donkey skeletal muscle lncRNAs were identified using RNA-Seq along with a stringent screening procedure in the longissimus dorsi (LD) and gluteal (G) muscles. These lncRNAs share many characteristics with other mammalian lncRNAs, such as shorter open reading frames (ORFs) and lower expression levels than mRNAs. Furthermore, in pairwise comparisons between libraries of the same stage for two genetic types of male Dezhou donkey, 73 differentially expressed lncRNAs were common to all muscle tissues.
Project description:We investigated the biological effects of ZEA exposure on donkey granulosa cells by using RNA-seq analysis. ZEA at 10 and 30 μM were administered to granulosa cells within 72 hours of in vitro culture. ZEA at 10 μM significantly altered the tumorigenesis associated genes in donkey granulosa cells. Exposure to 10 and 30 μM ZEA treatment significantly reduced mRNA expression of PTEN, TGFβ, ATM, and CDK2 genes, particularly, the ZEA treatment significantly increased the expression of PI3K and AKT genes. Furthermore, immunofluorescence, RT-qPCR, and Western blot analysis verified the gene expression of ZEA-exposed granulosa cells. Collectively, these results demonstrated the deleterious effect of ZEA exposure on the induction of ovarian cancer related genes via the PTEN/PI3K/AKT signaling pathway in donkey granulosa cells in vitro.
Project description:With the increasing demand for donkey production, there has been a growing focus on the breeding of donkeys. However, our current understanding of the mechanisms underlying spermatogenesis and maturation in donkeys during reproduction remains limited.In this study, we constructed a single-cell RNA dataset to study the single-cell landscape of donkey spermatogenesis and maturation. This method allows us to analyze the cell composition in testicular and epididymal tissue, providing insights into the changes that occur during donkey spermatogenesis and maturation. In addition, different gene expression signatures associated with various spermatogenic cell types were found
Project description:We examined the growth curve, cell cycle, apoptosis and glycolysis of donkey, horse and mule adult fibroblasts (DAFs, HAFs and MAFs), which indicated there are differences in cell proliferation and metabolism. We also derived mule, donkey and horse iPSCs from their respective adult fibroblasts by piggyBac transposition, and we found the induced reprogramming efficiency of mule iPSCs was significantly higher than donkey and horse iPSCs (78.3% vs 58.2% vs 47.9%). miPSCs, diPSCs and hiPSCs all expressed high levels of key endogenous pluripotency genes such as Oct4, Sox2 and Nanog, propagated robustly in single cell passaging and miPSCs were found to proliferated significantly faster than diPSCs and hiPSCs. Furthermore, miPSCs/MAFs clustered closer to diPSCs/DAFs than to hiPSCs/HAFs by RNA-seq. The establishment of miPSCs provide unique experimental materials for further investigation of understanding the “heterosis” and reproductive isolation during speciation.
Project description:The content of intramuscular fat (IMF) is closely related to meat quality traits. In this study, in order to explore the candidate genes related to IMF content, the longissimus dorsi muscle of Guangling donkey was measured for intramuscular fat content. According to its intramuscular fat content, it was divided into two groups, the low fat group (L , N=3) and high-fat group (H, n=3), using RNA-seq to identify differentially expressed genes (DGEs) on the longissimus dorsi muscle tissue of Guangling donkey with high and low intramuscular fat content to reveal the possibility Gene network and metabolic pathways that help increase intramuscular fat content. A total of 167 DEGs (|log2Fold Change|>=1 and FDR<0.05) were detected in the high (H) and low (L) groups of Guangling donkeys, of which 64 were up-regulated genes and 103 were down-regulated genes. The GO enrichment and KEGG pathway analysis showed that these differential genes were enriched in several biological processes and pathways related to adipocyte differentiation, lipid biosynthesis, and neutral lipid metabolism. These results will help to further explore the molecular mechanism of IMF deposition in donkeys and provide a theoretical basis for the molecular breeding of Guangling donkeys.
Project description:The first GSSM of V. vinifera was reconstructed (MODEL2408120001). Tissue-specific models for stem, leaf, and berry of the Cabernet Sauvignon cultivar were generated from the original model, through the integration of RNA-Seq data. These models have been merged into diel multi-tissue models to study the interactions between tissues at light and dark phases.
Project description:<p>The Finland-United States Investigation of NIDDM Genetics (FUSION) study is a long-term effort to identify genetic variants that predispose to type 2 diabetes (T2D) or that impact the variability of T2D-related quantitative traits (QTs). Skeletal muscle and adipose are major insulin target tissues and play key roles in insulin resistance. We hypothesize that a subset of T2D and related QT variants alter gene expression in skeletal muscle and adipose tissue. For this FUSION Tissue Biopsy Study, we have obtained and are analyzing RNA-Seq, microRNA (miRNA)-Seq, and DNA methylation (methyl)-Seq data on biopsy samples from 331 individuals from across the range of glucose tolerance: 124 normal glucose tolerance (NGT), 77 impaired glucose tolerance (IGT), 44 impaired fasting glucose (IFG), and 86 newly-diagnosed T2Ds. Participants completed two study visits, two weeks apart. First visits comprised most of the clinical phenotyping, including four-point OGTT (fasting, and 30, 60, and 120 minute post-load); BMI, WHR; lipids; blood pressure; and many other variables. Participants also completed FUSION health history, medication, and lifestyle questionnaires. At second visit, we obtained ~250mg <i>vastus lateralis</i> skeletal muscle, ~750mg abdominal subcutaneous adipose, and a ~5x15mm section of abdominal skin. Visits were completed in March 2013. RNA isolation is ongoing in the Collins laboratory at the NIH, RNA and miRNA sequencing at the NIH Intramural Sequencing Center (NISC), and genotyping at the Center for Inherited Disease Research (CIDR). Individual-level data is available here for the 306 individuals who consented to data deposit.</p> <p>To focus on evaluation of gene expression and its regulation in skeletal muscle, we analyzed mRNA extracted from <i>vastus lateralis</i> skeletal muscle obtained from 271 of the 331 individual subjects from Finland, along with genome-wide genotypes. Individual-level data is available here for the 250 subjects who reconsented to the use of their data. Release phs001048.v2.p1 adds muscle data for an additional 42 subjects and data from adipose tissue for 276 subjects. Total RNA was isolated using Trizol extraction in the Collins laboratory at the NIH. The mRNA was poly-A selected, 24-plex libraries were generated using the Illumina TruSeq directional mRNA-seq library protocol and RNA sequencing was performed on HiSeq2000 sequencers using 101bp paired-end reads at NISC. miRNA libraries were prepared from total RNA from 296 muscle and 270 adipose samples, pooled and sequenced 50bp single-end reads on Illumina HiSeq2500. Data for 272 muscle and 251 adipose samples are available here for individuals with consent for data deposit. DNA was extracted from blood in the Collins laboratory, and genotyping on the Illumina Omni2.5M array was performed at CIDR. Genotypes were imputed using the HRC 2016 reference panel. In order to assess regions of open chromatin in skeletal muscle, we obtained muscle tissue from a commercial provider to perform ATAC-seq; these samples were sequenced at the University of Michigan DNA Sequencing Core.</p> <p>Greater than 90% of the approximately 80 loci associated with T2D and the 100s of loci associated with T2D-related traits (glucose and insulin, anthropometrics, lipids) through genome-wide association studies occur in non-coding regions, suggesting a strong regulatory component to disease susceptibility. Regulatory element activity is often tissue-specific, which further complicates discovery of the causal/functional variation. Therefore, there is a critical need to understand the full spectrum of genetic variation and regulatory element usage in T2D-relevant tissues. To that end, this study contains whole genome sequence and whole genome bisulfite sequence, and/or Illumina MethylationEPIC Array data, of two tissues relevant to T2D: skeletal muscle and adipose tissue from individuals with glucose tolerance categories ranging from normal to T2D, providing a comprehensive survey of both individual genetic variation as well as DNA methylation across different tissues from multiple individuals.</p>