Project description:Colorectal cancer (CRC) incidence is rising globally and anticipated to become the leading cause of cancer death in younger individuals. Potential risk factors are diet induced obesity and altered microbiomes that lead to accumulation of toxic metabolite accumulation. However, how ammonia and other microbial metabolites impact key signaling pathways, such as TGF-β signaling, to promote CRC remains unclear. Our study investigates a critical link between gut microbiome alterations, ammonia, and their toxic effects on the TGF-β signaling pathway, to drive CRC progression. We found that in an obesity induced mouse model of cancer, altered microbial populations and ammonia promote Caspase-3-mediated cleavage of SMAD3 adaptor βII-spectrin (SPTBN1). Cleaved SPTBN1 fragments form adducts with ammonia to induce pro-inflammatory cytokine expression and alter TGF-β signaling driving CRC. Extending on Alphafold docking simulations, we identified that ammonia interacts with six polar residues at SPTBN1 (S553, Y556, S663, Y666, N986, and T1178) of cleaved SPTBN1 fragments to form hydrogen bonds that disrupt downstream SMAD3 signaling, altering TGF-β signaling to a protumorigenic phenotype. Blocking SPTBN1, through an SPTBN1 specific siRNA blocks ammonia toxicity and restore TGF-β signaling by reducing the abundance of SPTBN1 cleaved fragments. Importantly, SPTBN1 siRNA blocks ammonia toxicity and restore normal TGF-β signaling in CRC cells. Moreover, our research establishes crosstalk between TGF-β signaling and a microbial sensor, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), which is significantly overexpressed in CRC patients. We identified CEACAM1-SPTBN1 interactions at specific residues (E517 and Y520) within the immunoreceptor tyrosine-based inhibitory motif (ITIM) of CEACAM1 cytoplasmic domain, with both molecules playing pivotal roles in CRC progression. Our study identifies mechanistic insights into how microbial metabolites target TGF-β a major signaling pathways to promote CRC.
Project description:Increasing atmospheric CO2 concentrations are causing decreased pH over vast expanses of the ocean. This decreasing pH may alter biogeochemical cycling of carbon and nitrogen via the microbial process of nitrification, a key process that couples these cycles in the ocean, but which is often sensitive to acidic conditions. Recent reports indicate a decrease in oceanic nitrification rates under experimentally lowered pH. How composition and abundance of ammonia oxidizing bacteria (AOB) and archaea (AOA) assemblages respond to decreasing oceanic pH, however, is unknown. We sampled microbes from two different acidification experiments and used a combination of qPCR and functional gene microarrays for the ammonia monooxygenase gene (amoA) to assess how acidification alters the structure of ammonia oxidizer assemblages. We show that despite widely different experimental conditions, acidification consistently altered the community composition of AOB by increasing the relative abundance of taxa related to the Nitrosomonas ureae clade. In one experiment this increase was sufficient to cause an increase in the overall abundance of AOB. There were no systematic shifts in the community structure or abundance of AOA in either experiment. These different responses to acidification underscore the important role of microbial community structure in the resiliency of marine ecosystems. SUBMITTER_CITATION: Title: Acidification alters the composition of ammonia oxidizing microbial assemblages in marine mesocosms Journal: Marine Ecology Progress Series Issue: 492 Pages: 1-8 DOI: 10.3354/meps 10526 Authors: Jennifer L Bowen Patrick J Kearns Michael Holcomb Bess B Ward
Project description:The abundance of bacterial (AOB) and archaeal (AOA) ammonia oxidisers, assessed using quantitative PCR measurements of their respective a-subunit of the ammonia monooxygenase (amoA) genes, and ammonia oxidation rates were measured in four contrasting coastal sediments in the Western English Channel. Sediment was sampled bimonthly from July 2008 to May 2011, and measurements of ammonia oxidiser abundance and activity compared to a range of environmental variables including salinity, temperature, water column nutrients and sediment carbon and nitrogen content. Despite a higher abundance of AOA amoA genes within all sediments, and at all time-points, rates of ammonia oxidation correlated with AOB and not AOA amoA gene abundance. Other than ammonia oxidation rate, sediment particle size was the only variable that correlated with the spatial and temporal patterns of AOB amoA gene abundance, implying a preference of the AOB for larger sediment particles. This is possibly due to deeper oxygen penetration into the sandier sediments, increasing the area available for ammonia oxidation to occur, higher concentrations of inhibitory sulphide with pore waters of muddier sediments or a combination of both oxygen and sulphide concentrations. Similar to many other temporal studies of nitrification within estuarine and coastal sediments, decreases in AOB amoA gene abundance were evident during summer and autumn, with maximum abundance and ammonia oxidation rates occurring in winter and early spring. The lack of correlation between AOA amoA gene abundance and ammonium oxidation rate suggests an alternative role for amoA-carrying AOA within these sediments.
Project description:Increasing atmospheric CO2 concentrations are causing decreased pH over vast expanses of the ocean. This decreasing pH may alter biogeochemical cycling of carbon and nitrogen via the microbial process of nitrification, a key process that couples these cycles in the ocean, but which is often sensitive to acidic conditions. Recent reports indicate a decrease in oceanic nitrification rates under experimentally lowered pH. How composition and abundance of ammonia oxidizing bacteria (AOB) and archaea (AOA) assemblages respond to decreasing oceanic pH, however, is unknown. We sampled microbes from two different acidification experiments and used a combination of qPCR and functional gene microarrays for the ammonia monooxygenase gene (amoA) to assess how acidification alters the structure of ammonia oxidizer assemblages. We show that despite widely different experimental conditions, acidification consistently altered the community composition of AOB by increasing the relative abundance of taxa related to the Nitrosomonas ureae clade. In one experiment this increase was sufficient to cause an increase in the overall abundance of AOB. There were no systematic shifts in the community structure or abundance of AOA in either experiment. These different responses to acidification underscore the important role of microbial community structure in the resiliency of marine ecosystems. amoA gene diversity from two ocean acidification experiments, Monterey Bay experiment (two time points, ambient and acidified) and Vineyard Sound experiment (ambient and acifidied, with and without nutrients) examined with 2 two-color arrays (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5.