Project description:Gene expression Analysis of apomictic and sexual ovule at 4 developmental stage between apomictic and sexual reproducing Ranunculus
Project description:Sexual reproduction (meiosis and syngamy) is the major form of reproduction in diploid Boechera species, but most species hybrids reproduce by apomixis (unreduced gametophyte formation followed by parthenogenesis of the unreduced egg). In this study, we used Arabidopsis microarrays to detail global programs of gene expression underlying sexual and apomictic modes of reproduction.
Project description:F1 hybrids in Arabidopsis and crops species are uniform and high yielding. The F2 generation loses much of the yield advantage and the plants have heterogeneous phenotypes. We generated pure breeding Hybrid Mimic lines by recurrent selection and also selected a pure breeding Small phenotype line. The Hybrid Mimics are almost completely homozygous with chromosome segments from each parent. Four particular chromosomal segments from C24 and eight from Ler were present in all of the Hybrid Mimic lines whereas in the F6 Small phenotype line the 12 segments were each derived from the alternative parent. Loci critical for promoting hybrid vigor may be contained in each of these 12 conserved segments. We have identified genes with similar altered expression in Hybrid Mimics and F1 plants but not in the Small phenotype line. These genes may be critical for the generation of hybrid vigour. Analysis of transcriptomes indicated that increased expression of the transcription factor PHYTOCHROME-INTERACTING FACTOR (PIF4) may contribute to hybrid vigor by targeting the auxin biosynthesis gene YUCCA8 and the auxin signalling gene IAA29. A number of auxin responsive genes promoting leaf growth were upregulated in the F1 hybrids and Hybrid Mimics suggesting increased auxin biosynthesis and signaling contribute to the hybrid phenotype. The Hybrid Mimic seeds had earlier germination as did the seeds of the F1 hybrids indicating co-segregation of the genes for rosette size and the germination trait. Early germination may be an indicator of vigorous hybrids.
Project description:The behavior of transcriptomes and epigenomes in hybrids of heterotic parents is of fundamental interest. Here we report highly integrated maps of the epigenome, mRNA and small RNA transcriptomes of two rice subspecies and their reciprocal hybrids. We found that gene activity was correlated with DNA methylation and both active and repressive histone modifications in transcribed regions. Differential epigenetic modifications correlated with changes in transcript levels among hybrids and parental lines. Distinct patterns in gene expression and epigenetic modifications in reciprocal hybrids were observed. Through analyses of single nucleotide polymorphisms from our sequence data, we observed a high correlation of allelic bias of epigenetic modifications or gene expression in reciprocal hybrids with their differences in the parental lines. The abundance of distinct small RNA size classes differed between the parents and more small RNAs were down-regulated than up-regulated in the reciprocal hybrids. Together, our data reveals a comprehensive overview of transcriptional and epigenetic trends in heterotic rice crosses, and provides a very useful resource for the rice community.
Project description:Hybrid progeny can enjoy increased fitness and stress tolerance relative to their ancestral species, a phenomenon known as hybrid vigor. Though this phenomenon has been documented throughout the Eukarya, evolution of hybrid populations has yet to be explored experimentally in the lab. To fill this knowledge gap we created a pool of Saccharomyces cerevisiae and S. bayanus homoploid and aneuploid hybrids, and then investigated how selection in the form of incrementally increased temperature or ethanol impacted hybrid genome structure and adaptation. During 500 generations of continuous ammonia-limited, glucose-sufficient culture, temperature was raised from 25C to 46??C. This selection invariably resulted in nearly-complete loss of the S. bayanus genome, although the dynamics of genome loss differed among independent replicates. Temperature-evolved isolates were significantly more thermal tolerant and exhibited greater phenotypic plasticity than parental species and founding hybrids. By contrast, when the same hybrid pool was subjected to increases in exogenous ethanol from 0% to 14%, selection favored euploid S. cerevisiae x S. bayanus hybrids. Ethanol-evolved isolates exhibited significantly greater ethanol tolerance relative only to S. bayanus and one of the founding hybrids tested. Adaptation to thermal and ethanol stress manifested as heritable changes in cell wall structure demonstrated by resistance to zymolyase or micafungin treatment. This is the first study to show experimentally that the fate of interspecific hybrids critically depends on the type of selection they encounter during the course of evolution. Array-CGH was performed on the S. cerevisiae parent strain CEN.PK (GSY2160), the S. bayanus parent strain CBS7001 (GSY2161) and on the F1 interspecific hybrid resulting from mating the 2 parents (GSY2168). Additionally, three rare viable spores obtained after sporulation of the F1 were assayed by array-CGH (F2a, F2b, F2c). A large pool of F2 spores (and probably some number of F1 hybrid cells) were subjected to gradually increasing temperatures, in three independent vessels, with populations sampled at various generation times. Likewise, the same pool was used to found populations in an additional three independent vessels, which were then subjected to gradually increasing ethanol concentrations (at constant temperature). Array-CGH was performed on three different clones from each of the three temperature vessels at the final 500 generation time point (T500 clones). Biological replicates of the T500 clones were performed (T500-new). Two self-self array-CGH hybridization controls were also performed (self-control). Array-CGH was performed on one clone from each of the three ethanol vessels taken at the 400 generation timepoint (EtOH400gen clones).
Project description:Some flowering plants exhibit a phenomenon called apomixis, defined as the ability to produce seeds asexually and with the same genetic constitution as the mother plant. The existence of a genetic basis for apomixis is evident, but the molecular mechanisms that underlie it remain unclear. The search for M-bM-^@M-^\the master apomixis geneM-bM-^@M-^] had led to the isolation of diverse candidate transcripts. However, neither of them could be clearly confirmed. The techniques employed so far have been based on differential-display PCR and have not allowed detecting transcripts with low levels of expression or low differential expression. For all these reasons, in this study we employed cDNA microarrays combined with subtractive libraries in order to isolate transcripts with differential expression between sexual and apomictic plants of the genus Brachiaria. We used ovaries corresponding to two developmental stages: i) stage I, appearing of initial aposporic cell in apomictic plants; and ii) stage II, degeneration of meiotic-derived tetrad and establishment of diploid embryo sac in apomictic plants. Subtractive libraries revealed some differential bands, which were spotted over glass slides together with clones from non-subtractive libraries, and with amplicons associated to apomixis obtained using degenerate PCR. A total of 26 distinct sequences showed differential expression, only 1 of them was overexpressed in apomictic plants, and the majority was related to stage I. Bioinformatic analyses confirmed meiosis-related roles for some of the genes, a result consistent with a higher level of expression in sexual ovaries. Nevertheless, for some sequences a clear function could not be assigned. Some of them appear to be related to the polyploid stage of apomictic plants, in one hand, and to putative transcription factors, on the other hand. The implications of these results under a molecular model of apomeiosis are discussed. We employed RNA from ovaries from sexual plants as a control, and RNA from ovaries of apomictic plants as experiment. Four different sexual and four apomictic genotypes were employed. A sexual genotype was compared against a given apomictic genotype, for a total of 4 comparisions. Each comparision were performed ifor two developmental stages, for a total of eight comparisions. In each comparision, a dye swap was done.