Project description:HDAC3 and HDAC8 are members of class I deacetylases involved in several biological mechanisms and represent a highly sought-after therapeutic target for drug development. It is historically challenging to develop selective deacetylase inhibitors due to their conserved catalytic domains. HDAC3 also has deacetylase-independent activity, which cannot be blocked by conventional enzymatic inhibitors. Recent advance in proteolysis-targeting chimeras (PROTACs) provides an opportunity to eliminate the whole protein selectively, abolishing both enzymatic and scaffolding function. Here, we report a novel HDAC3/8 dual degrader YX968 that induces highly potent, rapid, and selective degradation of both HDAC3 and HDAC8 without trigging pan-HDAC inhibitory effects. Unbiased quantitative proteomics experiments further confirmed its high selectivity. This dual-specific degrader specifically ablates cellular pathways attributed to HDAC3 and HDAC8 and exhibits high potency in killing cancer cells. YX968 represents a new probe for dissecting the complex biological functions of HDAC3 and HDAC8.
Project description:HDAC3 and HDAC8 are members of class I deacetylases involved in several biological mechanisms and represent a highly sought-after therapeutic target for drug development. It is historically challenging to develop selective deacetylase inhibitors due to their conserved catalytic domains. HDAC3 also has deacetylase-independent activity, which cannot be blocked by conventional enzymatic inhibitors. Recent advances in proteolysis-targeting chimeras (PROTACs) provides an opportunity to eliminate the whole protein selectively, abolishing both enzymatic and scaffolding functions. Here, we report a novel HDAC3/8 dual degrader YX968 that induces highly potent, rapid and selective degradation of both HDAC3 and HDAC8 without trigging pan-HDAC inhibitory effects. Unbiased quantitative proteomics experiments further confirmed its high selectivity. This dual-specific degrader specifically ablates cellular pathways attributed to HDAC3 and HDAC8 and exhibits high potency in killing cancer cells. YX968 represents a new probe for dissecting the complex biological functions of HDAC3 and HDAC8.
Project description:HDAC3 and HDAC8 are members of class I deacetylases involved in several biological mechanisms and represent a highly sought-after therapeutic target for drug development. It is historically challenging to develop selective deacetylase inhibitors due to their conserved catalytic domains. HDAC3 also has deacetylase-independent activity, which cannot be blocked by conventional enzymatic inhibitors. Recent advances in proteolysis-targeting chimeras (PROTACs) provide an opportunity to eliminate the whole protein selectively, abolishing both enzymatic and scaffolding functions. Here, we report a novel HDAC3/8 dual degrader YX968 that induces highly potent, rapid and selective degradation of both HDAC3 and HDAC8 without trigging pan-HDAC inhibitory effects. Unbiased quantitative proteomics experiments further confirmed its high selectivity. This dual-specific degrader specifically ablates cellular pathways attributed to HDAC3 and HDAC8 and exhibits high potency in killing cancer cells. YX968 represents a new probe for dissecting the complex biological functions of HDAC3 and HDAC8.
Project description:We have developed AK2292 as a first, potent and selective small-molecule degrader of both STAT5A and STAT5B isoforms. To investigate the effect of STAT5A/STAT5B depletion on the transcriptome, we treated KU812 and NCO2 cells with AK2292 at 1 μM for 8 h and performed RNA-seq analysis. As a control, we treated KU812 and NCO2 cells with AK2292Me at 5 μM for 24 h for RNA-seq analysis. RNA-seq analysis revealed that AK2292 downregulates the transcriptome associated with STAT5A and STAT5B.
Project description:PARP1 is an abundant nuclear protein that is involved in a number of biological processes linked to cellular stress responses. PARP1 inhibitors (PARPi) are known to kill tumor cells via two mechanisms (PARP1 catalytic inhibition and PARP1 trapping). In this work we discovered a PROTAC degrader of PARP1 -180055, which uncoupled PARP1 trapping and inhibition. Moreover, 180055 has great potential for treating cancers.
Project description:Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a critical stress sentinel that co- ordinates cell survival, inflammation, and immunogenic cell death (ICD). Although the catalytic function of RIPK1 is required to trigger cell death, its non-catalytic scaffold function mediates strong pro-survival signaling. Accordingly, cancer cells can hijack RIPK1 to block necroptosis and evade immune detection. We generated a small-molecule proteolysis-targeting chimera (PROTAC) that selectively degraded human and murine RIPK1. PROTAC-mediated depletion of RIPK1 deregulated TNFR1 and TLR3/4 signaling hubs, accentuating the output of NF-kB, MAPK, and IFN signaling. Additionally, RIPK1 degradation simultaneously promoted RIPK3 activation and necroptosis induction. We further demonstrated that RIPK1 degradation enhanced the immunostimulatory effects of radio- and immunotherapy by sensitizing cancer cells to treat- ment-induced TNF and interferons. This promoted ICD, antitumor immunity, and durable treatment responses. Consequently, targeting RIPK1 by PROTACs emerges as a promising approach to overcome radio- or immunotherapy resistance and enhance anticancer therapies.