Project description:Raw metabolomic Mass spectrometry data from thermal stress experiment on 3 corals from the Great Barrier Reef, Acropora hyacinthus , Porites lobata and Stylophora pistillata.
Project description:Thermal history plays a role in the response of corals to subsequent heat stress. Prior heat stress can have a profound impact on later thermal tolerance, but the mechanism for this plasticity is not clear. The understanding of gene expression changes behind physiological acclimatization is critical in forecasts of coral health in impending climate change scenarios. Acropora millepora fragments were preconditioned to sublethal bleaching threshold stress for a period of 10 days; this prestress conferred bleaching resistance in subsequent thermal challenge, in which non-preconditioned coral bleached. Using microarrays, we analyze the transcriptomes of the coral host, comparing the bleaching-resistant preconditioned treatment to non-preconditioned and control treatments.
Project description:Thermal history plays a role in the response of corals to subsequent heat stress. Prior heat stress can have a profound impact on later thermal tolerance, but the mechanism for this plasticity is not clear. The understanding of gene expression changes behind physiological acclimatization is critical in forecasts of coral health in impending climate change scenarios. Acropora millepora fragments were preconditioned to sublethal bleaching threshold stress for a period of 10 days; this prestress conferred bleaching resistance in subsequent thermal challenge, in which non-preconditioned coral bleached. Using microarrays, we analyze the transcriptomes of the coral host, comparing the bleaching-resistant preconditioned treatment to non-preconditioned and control treatments. This experiment compared host gene expression of Acropora millepora across control, non-preconditioned, and preconditioned treatments. Fragments were sampled prior to preconditioning (Day 4), following 10 days of thermal preconditioning (Day 20), and after two (Day 23), four (Day 25), and eight days (Day 29) of 31M-BM-0C thermal challenge. The analysis implements 45 arrays, representing 5 sampling points of three treatments (n=3).