Project description:Fusarium graminearum gene expression profiles were compared during an early infection time course (1, 2, and 4d post-inoculation) of three monocot hosts (wheat heads, barley heads, and maize developing kernels).
Project description:Purpose: To explore the mechanism of Frenolicin B could control the Fusarium Head Blight on Wheat. Methods: Fusarium graminearum were inoculated into PDB broth and cultivated 36 hours. After that, Frenolicin B was added in the broth of Fusarium graminearum, and the same volumes of methanol were served as the control. Then incubated together 6 hours.
Project description:Fusarium graminearum and F. verticillioides are devastating cereal pathogens with very different life history and ecological characteristics. F. graminearum is homothallic, and sexual spores are an important component of its life cycle, responsible for disease initiation. F. verticilloides is heterothallic, and produces only modest numbers of fruiting bodies, which are not a significant source of inoculum. To identify corresponding differences in the transcriptional program underlying fruiting body development in the two species, comparative expression was performed, analyzing six developmental stages. To accompany the transcriptional analysis, detailed morphological characterization of F. verticillioides development was performed and compared to a previous morphological analysis of F. graminearum. Morphological development was similar between the two species, except for the observation of possible trichogynes in F. verticillioides ascogonia, which have not been previously reported for any Fusarium species. Expression of over 9000 orthologous genes were measured for the two species. Functional assignments of highly expressed orthologous genes at each time-point revealed the majority of highly expressed genes fell into the M-bM-^@M-^XM-bM-^@M-^Xunclassified proteinsM-bM-^@M-^YM-bM-^@M-^Y category, reflecting the lack of characterization of genes for sexual development in both species. Simultaneous examination of morphological development and stage-specific gene expression suggests that degeneration of the paraphyses during sexual development is an apoptotic process. Expression of mating type genes in the two species differed, possibly reflecting the divergent roles they play in sexual development. Overall, the differences in gene expression reflect the greater role of fruiting bodies in the life cycle and ecology of F. graminearum versus F. verticillioides. mRNA were sampled and compared from six time points across sexual reproduction in two Fusarium species
Project description:Fusarium graminearum and F. verticillioides are devastating cereal pathogens with very different life history and ecological characteristics. F. graminearum is homothallic, and sexual spores are an important component of its life cycle, responsible for disease initiation. F. verticilloides is heterothallic, and produces only modest numbers of fruiting bodies, which are not a significant source of inoculum. To identify corresponding differences in the transcriptional program underlying fruiting body development in the two species, comparative expression was performed, analyzing six developmental stages. To accompany the transcriptional analysis, detailed morphological characterization of F. verticillioides development was performed and compared to a previous morphological analysis of F. graminearum. Morphological development was similar between the two species, except for the observation of possible trichogynes in F. verticillioides ascogonia, which have not been previously reported for any Fusarium species. Expression of over 9000 orthologous genes were measured for the two species. Functional assignments of highly expressed orthologous genes at each time-point revealed the majority of highly expressed genes fell into the ‘‘unclassified proteins’’ category, reflecting the lack of characterization of genes for sexual development in both species. Simultaneous examination of morphological development and stage-specific gene expression suggests that degeneration of the paraphyses during sexual development is an apoptotic process. Expression of mating type genes in the two species differed, possibly reflecting the divergent roles they play in sexual development. Overall, the differences in gene expression reflect the greater role of fruiting bodies in the life cycle and ecology of F. graminearum versus F. verticillioides.
Project description:We report the transcriptome profile of different cultivars of Fusarium graminearum-infected wheat grains, aiming to search for some different expression genes and pathways to reveal the difference between wheat cultivars.
Project description:In this study, RNA-seq based comparative transcriptome analysis was used to study the response between Fusarium graminearum and Ustilago maydis to different growth conditions. RNA-seq libraries were generated from fungal filaments growing in culture (complete medium) and from infected maize silk. This data set contains the data for the Fusarium graminearum and Ustilago maydis medium growth condition.
Project description:We performed transcriptome analysis using an Agilent custom Fusarium graminearum 8X15k microarray ver1.2 to profile the effects of L-Thr treatment in F. graminearum.