Project description:To determine codon optimality in Aedes Albopictus C6/36 cells, we blocked transcription using three independent transcription inhibitors (5,6-Dichlorobenzimidazole 1-β-D-ribofuranoside (DRB), Flavopiridol and Triptolide) and measured the RNA level at 6 hours post treatment using RNA-seq.
Project description:The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus), exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery. Total small RNAs (miRNAs, siRNAs, piRNAs, etc.) were isolated and sequenced from the heads of sensor strain Aedes aegypti mosquitoes, or from the whole bodies of CHIKV-infected Aedes albopictus mosquitoes 8 hours post infection. Mosquitoes were grown at 18C or 28C in replicates of 1 (Ae. aegypti) or 3 (Ae. albopictus).
Project description:Ribosome profiling (Ribo-Seq) (maps positions of translating ribosomes on the transcriptome) and RNA-Seq (quantifies the transcriptome) analysis of African green monkey (Vero E6) cells and Aedes albopictus (C6/36) cells infected with Zika Virus (ZIKV) strain PE243. Cells were harvested at 24 h post infection (p.i.) and Ribo-Seq and RNA-Seq libraries were prepared and deep sequenced.
Project description:Wolbachia, an endosymbiotic bacterium, is being investigated as a vector control agent in several insect species. Along with the well known classical reproductive parasitism Wolbachia employs against its host to spread within the population, it is emerging that the bacteria can protect the host against pathogens and reduced pathogen transmission. Anopheles mosquitoes, which transmit malaria, have never been found to harbour Wolbachia in nature, and despite numerous transinfection attempts, no stable line has been developed. However recently, two strains of Wolbachia, wAlbB from Aedes albopictus, and wRi from Drosophila simulans were cultured in Anopheles gambiae Sua5B cells. These cell lines provides an amenable system to study Wolbachia-Anopheles interaction in the absence of a stable transinfected line. It has been proposed that the compromised vector competence of Wolbachia infected insects is due to an up regulation of the basal immune state. We therefore completed a genome wide expression profile of Wolbachia infected Anopheles, assessing both wAlbB and wRi infected cells in parallel against uninfected Sua5B cells. Two strains of Wolbachia, wRi from Drosophila simulans and wAlbB from Aedes albopictus were transfered into Anopheles gambiae Sua5B cells via the shell vial technique. After over 30 passages, these Wolbachia infected cells lines were then compared, in parallel, to the original uninfected Sua5B cells using Affymetrix microarrays.
Project description:Aedes albopictus shows a rapid global expansion and dramatic vectorial capacity for various arboviruses, thus posing a severe threat to global health. Although many noncoding RNAs have been confirmed to play functional roles in various biological processes in Ae. albopictus, the roles of circRNA remain a mystery. In the present study, we first performed high-throughput circRNA sequencing in Ae. albopictus. Then, we identified a cysteine desulfurase (CsdA) superfamily gene-originated circRNA, namely, aal-circRNA-407, which was the third most abundant circRNA in adult females and displayed a fat body highly expressed manifestation and blood feeding-dependent onset. siRNA-mediated knockdown of circRNA-407 resulted in a decrease in the number of developing follicles and a reduction in follicle size post blood meal. Furthermore, we demonstrated that circRNA-407 can act as a sponge of aal-miR-9a-5p to promote the expression of its target gene Foxl and eventually regulate ovarian development. Our study is the first to report a functional circRNA in mosquitoes, expanding our current understanding of important biological roles in mosquitoes and providing an alternative genetic strategy for mosquito control.
Project description:Aedes albopictus shows a rapid global expansion and dramatic vectorial capacity for various arboviruses. Mosquitoes display distinct sexual dimorphisms,only adult females consume blood meals to complete ovarian follicle development. Therefore, cyclic reproduction in female mosquitoes serves as a foundation for the transmission of numerous disease-causing pathogens. Aedes have an expansion of the piRNA biogenesis genes, indicated that piRNA may play multiple functional roles in mosquitoes. Although the antiviral function of piRNA pathway in mosquitoes has been extensively studied, the role of piRNAs in mosquito reproduction remain to be further understood. In the present study, we first profiled the characteristics of sex-biased piRNAs in adult Ae.albopictus. Then, we identified a female biased piRNA (Aalpi18529) in adult females, that was highly expressed in ovaries at blood feeding-dependent termination, and depended on PIWI5 and ago3 mediated biogenesis. Aalpi18529 overexpression suppressed ovarian development, and reduced fertility and fecundity in adult females post-bloodmeal. Furthermore, we demonstrated that Aalpi18529 can effectively repress its direct target, growth arrest and DNA-damage-inducible protein 45a (GADD45A), and eventually regulates ovarian development via the Gadd45a-mediated JNK-dependent nurse cell apoptosis pathway. Our study is the first to report an endogenous piRNA, which trigger silencing of an important protein-coding gene by posttranscriptional regulation in mosquitoes, expanding our current understanding of the important and multiple roles of piRNAs in biological processes in Ae. albopictus.
Project description:An iTRAQ-based quantitative proteomic analysis of ZIKV infected Aedes albopictus C6/36 cells was performed to investigate host proteins involved in ZIKV infection process. A total of 3,544 host proteins were quantified, with 200 being differentially regulated. Bioinformatics analysis on regulated host proteins highlights several ZIKV infection regulated biological processes.
Project description:In this work, we studied the impact of chikungunya virus (CHIKV) on the global proteome of functionally Dicer 2 active Aedes albopictus cells i.e. U4.4 cells at 12 hours post infection (hpi) and 60 hpi using mass spectrometry analysis. The non-radio labelling quantitative proteomics analysis of uninfected cells' proteome with that of 12 hpi and 60 hpi.