Project description:Transcriptomics by RNA-seq provides unparalleled insight into bacterial gene expression networks, enabling a deeper understanding of the regulation of pathogenicity, mechanisms of antimicrobial resistance, metabolism, and other cellular processes. Here we present the transcriptome architecture of Acinetobacter baumannii ATCC 17978, a species emerging as a leading cause of antimicrobial resistant nosocomial infections. Differential RNA-seq (dRNA-seq) examination of model strain ATCC 17978 in 16 laboratory conditions identified 3731 transcriptional start sites (TSS), and 110 small RNAs, including the first identification of 22 sRNA encoded at the 3′ end of mRNA.
Project description:Antibiotic-resistant infections caused by gram-negative bacteria are a major healthcare concern. Repurposing drugs circumvents the time and money limitations associated with developing new antimicrobial agents needed to combat these antibiotic-resistant infections. Here we identified the off-patent antifungal agent, ciclopirox, as a candidate to repurpose for antibiotic use. To test the efficacy of ciclopirox against antibiotic-resistant pathogens, we used a curated collection of Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates that are representative of known antibiotic resistance phenotypes. We found that ciclopirox, at 5-15 µg/ml concentrations, inhibited bacterial growth regardless of the antibiotic resistance status. At these same concentrations, ciclopirox reduced growth of Pseudomonas aeruginosa clinical isolates, but some of these pathogens required higher ciclopirox concentrations to completely block growth. To determine how ciclopirox inhibits bacterial growth, we performed an overexpression screen in E. coli. This screen revealed that galE, which encodes UDP-glucose 4-epimerase, rescued bacterial growth at otherwise restrictive ciclopirox concentrations. We found that ciclopirox does not inhibit epimerization of UDP-galactose by purified E. coli GalE; however, ?galU, ?galE, ?rfaI, or ?rfaB mutant strains all have lower ciclopirox minimum inhibitory concentrations than the parent strain. The galU, galE, rfaI, and rfaB genes all encode enzymes that use UDP-galactose or UDP-glucose for galactose metabolism and lipopolysaccharide (LPS) biosynthesis. Indeed, we found that ciclopirox altered LPS composition of an E. coli clinical isolate. Taken together, our data demonstrate that ciclopirox affects galactose metabolism and LPS biosynthesis, two pathways important for bacterial growth and virulence. The lack of any reported fungal resistance to ciclopirox in over twenty years of use in the clinic, its excellent safety profiles, novel target(s), and efficacy, make ciclopirox a promising potential antimicrobial agent to use against multidrug-resistant problematic gram-negative pathogens.
Project description:Acinetobacter baumannii and Klebsiella pneumoniae are opportunistic pathogens frequently co-isolated from polymicrobial infections. The infections where these pathogens co-exist can be more severe and recalcitrant to therapy than infections caused by either species alone, however there is a lack of knowledge on their potential synergistic interactions. In this study we characterise the genomes of A. baumannii and K. pneumoniae strains co-isolated from a single human lung infection. We examine various aspects of their interactions through transcriptomic, phenomic and phenotypic assays that form a basis for understanding their effects on antimicrobial resistance and virulence during co-infection. Using co-culturing and analyses of secreted metabolites, we discover the ability of K. pneumoniae to cross-feed A. baumannii by-products of sugar fermentation. Minimum inhibitory concentration testing of mono- and co-cultures reveals the ability for A. baumannii to cross-protect K. pneumoniae against the cephalosporin, cefotaxime. Our study demonstrates distinct syntrophic interactions occur between A. baumannii and K. pneumoniae, helping to elucidate the basis for their co-existence in polymicrobial infections.
Project description:Ciprofloxacin (CIP) and levofloxacin (LEV), widely used fluoroquinolone antibiotics, are often found in sewage from the sewage treatment plants and marine environment. In this study, CIP and LEV biodegrading bacterial consortia were obtained from industrial wastewater. Microorganisms in these consortia were identified as Acinetobacter baumannii (A. baumannii), Klebsiella pneumoniae (K. pneumoniae) and Elizabethkingia miricola (E. miricola). The impacts of the critical operating parameters on the elimination of CIP and LEV by bacterial consortia have been investigated and optimized to achieve the maximum levels of CIP and LEV biodegradation. Using liquid chromatography with tandem mass spectrometry (LC-MS-MS), possible degradation pathways for CIP and LEV were suggested by analyzing the intermediate degradation products. The role of the enzymes fluoroquinolone-acetylating aminoglycoside (6'-N-acetyltransferase) and cytochrome P450 (CYP450) in the breakdown of fluoroquinolones (FQs) was investigated as well. According to our findings, various biodegradation mechanisms have been suggested, including cleavage of piperazine ring, substitution of F atom, hydroxylation, decarboxylation, and acetylation, as the main biotransformation reactions. This study discovers the ability of non-reported bacterial strains to biodegrade both CIP and LEV as a sole carbon source, providing new insights into the biodegradation of CIP and LEV.
Project description:Cefiderocol (CFDC) is a novel chlorocatechol-substituted siderophore approved to treat complicated urinary tract infections and for hospital-acquired and ventilator-acquired pneumonia. In previous work, human fluids, were shown to increase the minimum inhibitory concentration (MICs) of Acinetobacter baumannii against CFDC and reduce the expression of genes related to iron uptake systems, which could explain the need for higher concentrations of CFDC to exert inhibitory action. Herein, we analyzed the impact of human urine (HU), which contains low albumin concentrations, on the expression of iron-uptake related genes and MIC values of two carbapenem-resistant A. baumannii. Levels of resistance to CFDC were not modified by HU in strain AMA40 but were reduced in the case of strain AB5075. Testing other carbapenem-resistant A. baumannii isolates showed that the CFDC MICs were unmodified or reduced in the presence of HU. The expression of piuA, pirA, bauA, and bfnH determined by qRT-PCR was enhanced in both strains when HU was present in the culture medium. All four tested genes are involved in recognizing ferric siderophore complexes or internalization into the cell’s cytosol. In contrast, the effect of HU on genes associated with resistance to β-lactams, antibiotics commonly used to treat urinary tract infections caused by A. baumannii, was variable; the transcriptional analysis of pbp1, pbp3, blaOXA-51-like, blaADC, and blaNDM-1 showed significant variation. In summary, HU, probably due to the albumin and free iron content, does not adversely impact or slightly improves the activity of CFDC when tested against A. baumannii in urine in contrast to other human bodily fluids.
Project description:The increasing rate of antibiotic-resistant bacteria has become a serious health threat. Thus, it is important to discover, characterize, and optimize new molecules to overcome infections caused by these bacteria. It is known that Acinetobacter baumannii has a high capacity to avoid antibacterial drugs. Consequently, these bacteria have emerged as one of responsible for hospital and community-acquired infections. However, how this pathogen infects and survives inside the host cell is unknown. Here we analyze the time-resolved transcriptional profile changes on human epithelial HeLa cells after A. baumannii. Our results show how A.baumannii can survive in host cells and starts replication at 4 hours post infection. We sequenced RNA to obtain a set of differentially expressed gen (DEGs) used for a Gene Ontology (GO) and KEGG pathway analysis. The results show us how host bacteria is altering the host cells environment for their own benefit. We also determine chromosomal regions affected by our set of genes. Furthermore, we obtain protein-protein networks that reveal highly interacted proteins. The combination of these results will pave the way to discover new antimicrobial candidates for multidrug-resistant bacteria.