Project description:We investigated the genomic enhancer landscape of Hepatocellular Carcinoma (HCC) using H3K27ac ChIP-seq and HiC/HiChIP data from resected tumour samples of 30 patients, whose genome, transcriptome, and clinical trajectory data were available. Differential enhancer analysis revealed dysregulated enhancer loci, but without strong enrichment of underlying DNA mutation hotspots. As many of the gain-in-tumour enhancer associated genes were fetal liver hepatoblast genes, we investigated the stochastic expression pattern of the overlapping genes (epigenetic oncofetal genes) using previously published single cell RNA-seq data, in which the patients partially overlapped. The proportion of cells expressing epigenetic oncofetal genes clustered liver tissue samples into two groups - adjacent normal liver-like, or oncofetal-like. Notably, gain-in-tumour enhancer associated genes showed prognostic value, with patient clusters revealed by co-clustering the differential gene expression pattern. Altogether, we report the genomic enhancer signature that associates with differential prognosis in HCC. Findings that cohere with oncofetal reprogramming in HCC is underpinned by genome-wide enhancer rewiring. Our results present the epigenetic changes in HCC that offer the rational selection of epigenetic-driven gene targets for therapeutic intervention or disease prognostication in HCC.
Project description:The ring-shaped cohesin complex topologically entraps two DNAs to establish sister chromatid cohesion. Cohesin also shapes the interphase chromatin landscape, with wide-ranging implications for gene regulation, which cohesin is thought to achieve by actively extruding DNA loops without topologically entrapping DNA. The ‘loop extrusion’ model find motivation from in vitro observations - whether this process indeed underlies chromatin loop formation in vivo remains untested. Here, using the budding yeast S. cerevisiae, we generate cohesin variants that have lost their ability to extrude DNA loops but retain their ability to topologically entrap DNA. Analysis of these variants suggests that in vivo chromatin loops form independently of loop extrusion. Instead, we find that transcription promotes loop formation, likely by generating DNA substrates for topological loop capture. Transcription furthermore acts as an extrinsic motor that, by pushing cohesin along transcription units, extends chromatin loops and defines their ultimate positions. Our results necessitate a re-evaluation of the loop extrusion hypothesis and point to an alternative mechanism for cohesin-dependent chromatin organisation. Loop formation by DNA-DNA capture, akin to sister chromatid cohesion establishment at replication forks, unifies cohesin’s two roles in chromosome segregation and interphase genome organisation.
Project description:The ring-shaped cohesin complex topologically entraps two DNAs to establish sister chromatid cohesion. Cohesin also shapes the interphase chromatin landscape, with wide-ranging implications for gene regulation, which cohesin is thought to achieve by actively extruding DNA loops without topologically entrapping DNA. The ‘loop extrusion’ model find motivation from in vitro observations - whether this process indeed underlies chromatin loop formation in vivo remains untested. Here, using the budding yeast S. cerevisiae, we generate cohesin variants that have lost their ability to extrude DNA loops but retain their ability to topologically entrap DNA. Analysis of these variants suggests that in vivo chromatin loops form independently of loop extrusion. Instead, we find that transcription promotes loop formation, likely by generating DNA substrates for topological loop capture. Transcription furthermore acts as an extrinsic motor that, by pushing cohesin along transcription units, extends chromatin loops and defines their ultimate positions. Our results necessitate a re-evaluation of the loop extrusion hypothesis and point to an alternative mechanism for cohesin-dependent chromatin organisation. Loop formation by DNA-DNA capture, akin to sister chromatid cohesion establishment at replication forks, unifies cohesin’s two roles in chromosome segregation and interphase genome organisation.
Project description:The organization of chromatin into higher-order structures is essential for chromosome segregation, the repair of DNA damage, and the regulation of gene expression. These structures are formed by the evolutionarily conserved SMC (structural maintenance of chromosomes) complexes. By analyzing synchronized populations of budding yeast with Micro-C, we observed that chromatin loops are formed genome-wide, and are dependent upon the SMC complex, cohesin. We correlated the loop signal with the position and intensity of cohesin binding to chromosomes in wild-type and cells depleted for the cohesin regulators Wpl1p and Pds5p. We generate a model to explain how the genomic distribution and frequency of loops are driven by cohesin residency on chromosomes. In this model a dynamic pool of cohesin with loop extrusion activity stops when encounters two regions occupied by stably bound cohesin, forming a loop. Different regions are occupied by cohesin in different cells, defining different patterns of chromatin loops.
Project description:The organization of chromatin into higher-order structures is essential for chromosome segregation, the repair of DNA damage, and the regulation of gene expression. These structures are formed by the evolutionarily conserved SMC (structural maintenance of chromosomes) complexes. By analyzing synchronized populations of budding yeast with Micro-C, we observed that chromatin loops are formed genome-wide, and are dependent upon the SMC complex, cohesin. We correlated the loop signal with the position and intensity of cohesin binding to chromosomes in wild-type and cells depleted for the cohesin regulators Wpl1p and Pds5p. We generate a model to explain how the genomic distribution and frequency of loops are driven by cohesin residency on chromosomes. In this model a dynamic pool of cohesin with loop extrusion activity stops when encounters two regions occupied by stably bound cohesin, forming a loop. Different regions are occupied by cohesin in different cells, defining different patterns of chromatin loops.
Project description:The transcription factor CTCF appears indispensable in defining topologically associated domain boundaries and maintaining chromatin loop structures within these domains, supported by numerous functional studies. However, acute depletion of CTCF globally reduces chromatin interactions but does not significantly alter transcription. Here we systematically integrated multi-omics data including ATAC-seq, RNA-seq, WGBS, Hi-C, Cut&Run, CRISPR-Cas9 survival dropout screening, time-solved deep proteomic and phosphoproteomic analyses in cells carrying auxin-induced degron at endogenous CTCF locus. Acute CTCF protein degradation markedly rewired genome-wide chromatin accessibility. Increased accessible chromatin regions were largely located adjacent to CTCF-binding sites at promoter regions and insulator sites and were associated with enhanced transcription of nearby genes. In addition, we used CTCF-associated multi-omics data to establish a combinatorial data analysis pipeline to discover CTCF co-regulatory partners in regulating downstream gene expression. We successfully identified 40 candidates, including multiple established partners (i.e., MYC) supported by all layers of evidence. Interestingly, many CTCF co-regulators (e.g., YY1, ZBTB7A) that have evident alterations of respective downstream gene expression do not show changes at their expression levels across the multi-omics measurements upon acute CTCF loss, highlighting the strength of our system to discover hidden co-regulatory partners associated with CTCF-mediated transcription. This study highlights CTCF loss rewires genome-wide chromatin accessibility, which plays a critical role in transcriptional regulation