Project description:G. sulfurreducens can generate electricity from the oxidation of organic compounds. This is because it can take electrons from organic compounds and ship them out to the outer surface of the cell where they can then be deposited on various insoluble electron acceptors including electrodes. Cells attatched to the surface of an electrode oxidize acetate and and deposit the electrons derived from acetate onto the surface of the electrode after which they can travel through an electrical circuit, producing a current. Microbial fuel cells powered by acetate oxidation by Geobacter species are called Geobatteries. In this experiment we compared gene expression in a biofilm of the wild type strain growing on the surface of an electrode within a current-producing Geobattery to gene expression in a wild type biofilm that is not producing current, but is growing on the surface of an electrode. In both cases, the cells were growing in a flow-through two chambered H-cell Geobattery setup. This consists of two glass chambers, an anoxic anode chamber containing G. sulfurreducens, a graphite electrode, a reference electrode and growth medium and an oxic chamber containing the counter electrode. The two chambers are connected by a cation selective membrane and a wire connected to a potentionstat. A potentiostat is an instrument which maintains the redox potential of the anode at a fixed value relative to a reference electrode. Media continuously flowed through the anoxic anode chamber at a dilution rate of 0.15. In the experimental condition, the Geobattery was operational. The circuit was closed and G. sulfurreducens attached to the electrode generated current as it oxidized acetate. The redox potential at the anode was poised at 300 mV by the potentiostat. In the control condition, everything was the same, except that the medium in the anode chamber contained fumarate as electron acceptor, and the anode was not hooked up to the potentiostat i.e. the circuit was open. This prevented the anode from serving as an electron acceptor. Nevertheless a thick G. sulfurreducens biofilm grew on the surface of the electrode. The control and experimental geobatteries were harvested when current in the operational/experimental Geobatteries reached 10 mA. Keywords: two condition comparison
Project description:Lysinibacillus varians GY32 is a filamentous bacteria that can generate electricity in microbial fuel cells. To find potential genes participating in the electron transfer to electrode of Lysinibacillus varians GY32, we compared the gene expression profiles of this bacteria with yeast extract as electron donor and two electron acceptors, i.e. oxygen and electrode in microbial fuel cells. The results showed that several cytochrome c genes might play specific roles in the extracellular electron transfer to electrode in this strain.
Project description:Lysinibacillus varians GY32 is a filamentous bacteria that can generate electricity in microbial fuel cells. To find potential genes participating in the electron transfer to electrode of Lysinibacillus varians GY32, we compared the gene expression profiles of this bacteria with acetate as electron donor and two electron acceptors, i.e. oxygen and electrode in microbial fuel cells. The results showed that several cytochrome c genes might play specific roles in the extracellular electron transfer to electrode in this strain.
Project description:In this study, we investigated the effects of organic vegetable juice supplementation on modulating the microbial community, and how its consumption ameliorates blood lipid profiles in diet-induced obese mice. Here, we analyzed the effect of organic vegetable juice on the microbial community and fatty acid synthesis via animal experiments using diet-induced obese mice and continuous colon simulation system. Organic vegetable juice supplement influenced intestinal bacterial composition from phylum to genus level, including decreased Proteobacteria in the ascending colon in the phylum. At the family level, Akkermansia which are associated with obesity, were significantly augmented in the transverse colon and descending colon compared to the control juice group. In addition, treatment with organic vegetable juice affected predicted lipid metabolism function genes related to lipid synthesis. Organic vegetable juice consumption did not have a significant effect on weight loss but helped reduce epididymis fat tissue and adipocytes. Additionally, blood lipid profiles, such as triglyceride, high-density lipoprotein, and glucose, were improved in the organic vegetable juice-fed group. Expression levels of genes related to lipid synthesis, including SREBP-1, PPARγ, C/EBPα, and Fas, were significantly decreased. Analysis of antioxidant markers, including 8-OHdG and MDA, in the vegetable juice group, indicated that blood lipid profiles were improved by the antioxidant effect. These results suggest that organic vegetable juice supplementation may modulate gut microbial community and reduce the potential role of hyperlipidemia in diet-obese mice.