Project description:Exploring differentially expressed miRNAs (DEmiRNAs) in plasma sample between lung adenocarcinoma patients and healthy people using a small RNA (sRNA) sequencing,results showed that we could used these DEmiRNAs identified could discriminate healthy peoples from lung adenocarcinoma patients. In present study, we applied an RNA sequencing (RNA-seq) approach to explore the differentially expressed miRNAs (DEmiRNAs) in plasma sample between 6 lung adenocarcinoma patients and 4 healthy people.
Project description:Single cell-based studies have revealed tremendous cellular heterogeneity in stem cell and progenitor compartments, suggesting continuous differentiation trajectories with intermixing of cells at various states of lineage commitment and notable degree of plasticity during organogenesis. The hepato-pancreato-biliary organ system relies on a small endoderm progenitor compartment that gives rise to a variety of different adult tissues, including liver, pancreas, gallbladder, and extra-hepatic bile ducts. Experimental manipulation of various developmental signals in the mouse embryo underscored important cellular plasticity in this embryonic territory. This is also reflected in the existence of human genetic syndromes as well as congenital or environmentally-caused human malformations featuring multiorgan phenotypes in liver, pancreas and gallbladder. Nevertheless, the precise lineage hierarchy and succession of events leading to the segregation of an endoderm progenitor compartment into hepatic, biliary, and pancreatic structures are not yet established. Here, we combine computational modelling approaches with genetic lineage tracing to assess the tissue dynamics accompanying the ontogeny of the hepato-pancreato-biliary organ system. We show that a multipotent progenitor domain persists at the border between liver and pancreas, even after pancreatic fate is specified, contributing to the formation of several organ derivatives, including the liver. Moreover, using single-cell RNA sequencing we define a specialized niche that possibly supports such extended cell fate plasticity.
Project description:Intervention type:DRUG. Intervention1:Huaier, Dose form:GRANULES, Route of administration:ORAL, intended dose regimen:20 to 60/day by either bulk or split for 3 months to extended term if necessary. Control intervention1:None.
Primary outcome(s): For mRNA libraries, focus on mRNA studies. Data analysis includes sequencing data processing and basic sequencing data quality control, prediction of new transcripts, differential expression analysis of genes. Gene Ontology (GO) and the KEGG pathway database are used for annotation and enrichment analysis of up-regulated genes and down-regulated genes.
For small RNA libraries, data analysis includes sequencing data process and sequencing data process QC, small RNA distribution across the genome, rRNA, tRNA, alignment with snRNA and snoRNA, construction of known miRNA expression pattern, prediction New miRNA and Study of their secondary structure Based on the expression pattern of miRNA, we perform not only GO / KEGG annotation and enrichment, but also different expression analysis.. Timepoint:RNA sequencing of 240 blood samples of 80 cases and its analysis, scheduled from June 30, 2022..
Project description:We analyzed small-RNA sequencing data from plasma-derived exosome (PEV) from a cohort of NSCLC patients at different stages. We identified two ED miRNAs in circulation able to distinguish between normal and tumor sample subtypes.
Project description:EV RNA samples from MH-S cells were prepared for small RNA sequencing by TruSeq Small RNA Sample Prep Kits (Illumina, San Diego,USA), using a minimum of 1 μg RNA per sample.
Project description:Needle biopsies were performed to obtain liver samples from patients for clinical purposes from patients with Alagille syndrome. A small portion was snap frozen and later used for RNA sequencing analysis. Needle biospies from 5 patients with other liver disorders were included as controls.
Project description:In this study we present an experimental pipeline that takes into consideration sample collection, processing, enrichment, and the subsequent comparative analysis of circulating small ribonucleic acids using small RNA sequencing and RT-qPCR. Initially, a panel of miRNAs dysregulated in circulating blood from breast cancer patients compared to healthy women were identified using small RNA sequencing. MiR-320a was identified as the most dysregulated miRNA between the two female cohorts. Total RNA and enriched small RNA populations (<30 bp) isolated from peripheral blood from the same female cohort samples were then tested using a miR-320a RT-qPCR assay. When total RNA was analyzed with this miR-320a RT-qPCR assay, a 2.3-fold decrease in expression levels was observed between blood samples from healthy controls and breast cancer patients. However, upon enrichment for the small RNA population and subsequent analysis of miR-320a using RT-qPCR, its dysregulation in breast cancer patients was more pronounced with an 8.89-fold decrease in miR-320a expression.
Project description:We applied small RNA sequencing technology to identify precursor tRNA derived small RNA expression in human cancer cell lines and human liver tissues.
Project description:We performed very deep small RNA sequencing on one sample of medial entorhinal cortex of a Long Evans rat aged P23 to see which small RNAs could be detected in this brain area.