Project description:The transcriptomic response of two strains of the Pacific whiteleg shrimp, different in their resistance to Taura Syndrome Virus (TSV), in response to infection with TSV and Yellow Head Virus (YHV). Changes in gene expression in the shrimp’s hepatopancreas were assessed using a cDNA microarray containing 2,469 putative unigenes. The patterns of gene expression between the shrimp strains were considerably similar, except for the more advanced stages of Taura Syndrome. Between the different treatments approximately 250 genes were differently expressed. The most advanced stages of YHV infection showed the highest number of differently expressed genes. During infection there were profound changes in the expression of genes related to lipid and protein metabolism, cellular trafficking, immune defense and stress response. Keywords: Disease state analysis, disease resistance There were 5 biological replicates for each of the groups in this experiment. Also, two strains of Litopenaeus vannamei were used: a strain resistant to TSV and a strain susceptible to TSV (Kona line). The treatments consisted of injecting both strains with 60mL of a shrimp extract made from shrimp previously injected with either a SPF shrimp extract (1x10-4), Taura Syndrome Virus (1x10-5) or Yellow Head Virus (1x10-4). The 2 initial control groups were composed of hepatopancreas samples from both strains prior the injections. Samples were also collected from at days 1 and 2 from both strains from the 3 different treatments (control, TSV and YHV).
Project description:Shrimp allergy is the second most common food allergy in the United States. γδ T cells play a regulatory role in peanut immunotherapy, but their role in shrimp allergy remains unclear. We hypothesized γδ T cells play a regulatory role in shrimp allergic disease. We performed single cell RNA sequencing on peripheral cells from shrimp allergic (SA) and healthy control (HC) subjects after stimulation with shrimp tropomyosin. We found significant expansion of γδ T cells and three distinct clusters. One γδ T cell cluster predominated in SA, characterized as CD8+ with a cytotoxic expression profile. We found significant upregulation of TGF-β1 and downregulation of IL-7R in SA-stimulated vs. HC-stimulated γδ T cells, and IL-10 secretion in stimulated SA γδ T cells. γδ T cells play an important role in the pathogenesis of shrimp allergy through lymphocyte-mediated cytotoxin signaling and cytokine-mediated signaling pathways, including TGFβ-1, IL7/TSLP-IL7R, and IL10-IL10R pathways.