Project description:HIV-vpr expression was mainly detected in tubule cells after infection. By comparing the HIV-infected and wild type kidney cells on single cell level, a strong shift was observed in the PT S3 segment cell population. Transcription factor analysis revealed Trp53 playing important regulation role in HIV infected cells.
Project description:The heterogeneity and rarity of HIV-1-infected cells hampers effective cure strategies. We used single-cell DOGMA-seq to simultaneously capture transcription factor accessibility, transcriptome, 156 surface proteins, HIV-1 DNA, and HIV-1 RNA from six HIV-1+ individuals during viremia and after suppressive antiretroviral therapy. We identified 252 transcriptionally inactive (HIV-1 DNA+ RNA–) and 270 transcriptionally active (HIV-1 RNA+) HIV-1-infected cells from 82,549 memory CD4+ T cells. We identified increased transcription factor accessibility in HIV-1 DNA+ RNA– cells (RORC) and HIV-1 RNA+ cells (IRF and AP-1), in addition to CNC and MAF in both. Both HIV-1 DNA+ RNA– and HIV-1 RNA+ cells upregulate IKZF3 (Aiolos) that correlates with proliferation of HIV-1-infected cells. We revealed that the heterogeneous HIV-1-infected T cells comprise four distinct immune programs driven by epigenetic regulators – IRF-activation, Eomes-cytotoxic effector, AP-1-migration, and cell death. Our study revealed the single-cell epigenetic, transcriptional, and protein states of transcriptionally inactive and active HIV-1-infected cells.
Project description:The heterogeneity and rarity of HIV-1-infected cells hampers effective cure strategies. We used single-cell DOGMA-seq to simultaneously capture transcription factor accessibility, transcriptome, 156 surface proteins, HIV-1 DNA, and HIV-1 RNA from six HIV-1+ individuals during viremia and after suppressive antiretroviral therapy. We identified 252 transcriptionally inactive (HIV-1 DNA+ RNA–) and 270 transcriptionally active (HIV-1 RNA+) HIV-1-infected cells from 82,549 memory CD4+ T cells. We identified increased transcription factor accessibility in HIV-1 DNA+ RNA– cells (RORC) and HIV-1 RNA+ cells (IRF and AP-1), in addition to CNC and MAF in both. Both HIV-1 DNA+ RNA– and HIV-1 RNA+ cells upregulate IKZF3 (Aiolos) that correlates with proliferation of HIV-1-infected cells. We revealed that the heterogeneous HIV-1-infected T cells comprise four distinct immune programs driven by epigenetic regulators – IRF-activation, Eomes-cytotoxic effector, AP-1-migration, and cell death. Our study revealed the single-cell epigenetic, transcriptional, and protein states of transcriptionally inactive and active HIV-1-infected cells.
Project description:The heterogeneity and rarity of HIV-1-infected cells hampers effective cure strategies. We used single-cell DOGMA-seq to simultaneously capture transcription factor accessibility, transcriptome, 156 surface proteins, HIV-1 DNA, and HIV-1 RNA from six HIV-1+ individuals during viremia and after suppressive antiretroviral therapy. We identified 252 transcriptionally inactive (HIV-1 DNA+ RNA–) and 270 transcriptionally active (HIV-1 RNA+) HIV-1-infected cells from 82,549 memory CD4+ T cells. We identified increased transcription factor accessibility in HIV-1 DNA+ RNA– cells (RORC) and HIV-1 RNA+ cells (IRF and AP-1), in addition to CNC and MAF in both. Both HIV-1 DNA+ RNA– and HIV-1 RNA+ cells upregulate IKZF3 (Aiolos) that correlates with proliferation of HIV-1-infected cells. We revealed that the heterogeneous HIV-1-infected T cells comprise four distinct immune programs driven by epigenetic regulators – IRF-activation, Eomes-cytotoxic effector, AP-1-migration, and cell death. Our study revealed the single-cell epigenetic, transcriptional, and protein states of transcriptionally inactive and active HIV-1-infected cells.
Project description:The clonal expansion of HIV-1-infected CD4+ T cells is a major barrier to cure. Using single-cell ECCITE-seq, we examined the transcriptional landscape, upstream immune regulators, HIV-1 RNA expression, and T cell clonal expansion dynamics of 215,458 CD4+ T cells (267 HIV-1 RNA+ cells and 68 expanded HIV-1 RNA+ T cell clones) from six HIV-1-infected individuals (during viremia and after suppressive antiretroviral therapy) and two uninfected individuals, in unstimulated conditions and after CMV and HIV-1 antigen stimulation. We found that despite antiretroviral therapy, antigen and TNF responses persisted and shaped T cell clonal expansion. HIV-1 resided in Th1 polarized, antigen-responding T cells expressing Bcl-2 family anti-apoptotic genes. HIV-1 RNA+ T cell clones were larger in clone size, established during viremia, persistent after viral suppression, and enriched in GZMB+ cytotoxic effector memory Th1 cells. Targeting HIV-1-infected cytotoxic CD4+ T cells and drivers of clonal expansion provides a new direction for HIV-1 eradication.
Project description:We investigated the effects of HIV infection on immune cell exhaustion at the transcriptomic level by analyzing single-cell RNA sequencing of peripheral blood mononuclear cells from four healthy subjects (37,847 cells) and six HIV-infected donors (28,610 cells). We identified nine immune cell clusters and eight T cell subclusters according to their unique gene expression programs; three of these (exhausted CD4+ and CD8+ T cells and interferon-responsive CD8+ T cells) were detected only in samples from HIV-infected donors. An inhibitory receptor KLRG1 was identified in the exhausted T cell populations and further characterized in HIV infected individuals. We identified a HIV-1 specific exhausted CD8+ T cell population expressing KLRG1, TIGIT, and T-betdimEomeshi markers. Ex-vivo antibody blockade of KLRG1 restored the function of HIV-specific exhausted CD8+ T cells demonstrating the contribution of KLRG1+ population to T cell exhaustion and providing an immunotherapy target to treat HIV chronic infection. Analysis of gene signatures also revealed impairment of B cell and NK cell function in HIV-infected donors. These data provide a comprehensive analysis of gene signatures associated with immune cell exhaustion during HIV infection, which could be useful in understanding exhaustion mechanisms and developing new cure therapies.
Project description:Despite effective treatment, HIV can persist in latent reservoirs, which represent a major obstacle towards HIV eradication. Targeting and reactivating latent cells is challenging due to the heterogeneous nature of HIV infected cells. Here, we used a primary model of HIV latency and single-cell RNA sequencing to characterize transcriptional heterogeneity during HIV latency and reactivation. Our analysis identified transcriptional programs leading to successful reactivation of HIV expression. We further validated our results using primary CD4+ T cells isolated from HIV+ individuals.
Project description:Using HIV-1 SortSeq, we identified HIV-1-infected cells containing inducible HIV-1 for RNAseq from resting CD4+ T cells treated with PMA/ionomycin for 16 hours from HIV-1-infected, antiretroviral therapy treated, virally suppressed individuals. Using custom bioinformatic pipeline, we identified HIV-1 genomic RNA, host RNA and HIV-1-host chimeric RNA junctions.
Project description:There are 19 differentially expressed microRNAs among new HIV-infected cases, old HIV-infected cases and healthy controls. Five microRNAs show trends in healthy controls, new HIV-infected cases and old HIV-infected cases, they are hsa-miR-1291, and hsa-miR-3609 with up-trends, and hsa-miR-3162-3p, hsa-miR-874-5p and hsa-miR-4258 with down-trends.
Project description:Genome wide DNA methylation profiling of PBMC from South African patients either infected with HIV only or coinfected with HIV and tuberculosis (TB). The Illumina Infinium 27k Human DNA methylation Beadchip was used to obtain DNA methylation profiles from PBMC samples. Samples included 19 HIV patients and 20 HIV/TB co-infected patients.