Project description:In agroecosystems, a plant-usable form of nitrogen is mainly generated by legume-based biological nitrogen fixation, a process that requires phosphorus (P) as an essential nutrient. To investigate the physiological mechanism whereby phosphorus influences soybean nodule nitrogen fixation, soybean root nodules were exposed to four phosphate levels: 1 mg/L (P stress), 11 mg/L (P stress), 31 mg/L (Normal P), 61 mg/L (High P) then proteome analysis of nodules was conducted to identify phosphorus-associated proteome changes. We found that phosphorus stress-induced ribosomal protein structural changes were associated with altered key root nodule protein synthesis profiles. Importantly, up-regulated expression of peroxidase was observed as an important phosphorus stress-induced nitrogen fixation-associated adaptation that supported two nodule-associated activities: scavenging of reactive oxygen species (ROS) and cell wall growth. In addition, phosphorus transporter (PT) and purple acid phosphatase (PAPs) were up-regulated that regulated phosphorus transport and utilisation to maintain phosphorus balance and nitrogen fixation function in phosphorus-stressed root nodules.
2022-08-11 | PXD033875 | Pride
Project description:Effects of long-term nitrogen addition on soil fungal community in subtropical nitrogen saturated forest
Project description:Anthropogenic nitrogen (N) deposition may affect soil organic carbon (SOC) decomposition, thus affecting the global terrestrial carbon (C) cycle. However, it remains unclear how the level of N deposition affects SOC decomposition by regulating microbial community composition and function, especially C-cycling functional genes structure. We investigated the effects of short-term N addition on soil microbial C-cycling functional gene composition, SOC-degrading enzyme activities, and CO2 emission in a 5-year field experiment established in an artificial Pinus tabulaeformis forest on the Loess Plateau, China.
Project description:The response of arbuscular mycorrhizal fungi to nitrogen and phosphorus addition along with subtropical secondary forest succession.
Project description:We used the previously designed oligonucleotide-based microarray (Burgmann et al. Environmental Microbiology 2007, 9: 2742-2755) to detect the transcripts of R. pomeroyi DSS-3 genes when the cells were cultured under steady-state carbon (glucose), nitrogen (ammonium), phosphorus (phosphate), or sulfur (sulfate) limitation.
2011-10-01 | GSE27032 | GEO
Project description:Fungal community diversity under nitrogen addition
| PRJNA824223 | ENA
Project description:The bacterial composition responding to nitrogen addition