Project description:This trial studies how fiber and fish oil supplements affect the metabolism and activities of colon cells in healthy individuals. Diet is an important risk factor for colorectal cancer, and several dietary components important in colorectal cancer prevention are modified by gut microbial metabolism. Giving fiber and fish oil supplements may inhibit the growth of gut cells and ultimately reduce risk of colorectal cancer.
Project description:Erythromycin (ERY) is a commonly used antibiotic that can be found in wastewater effluents globally. Due to the mechanisms by which they kill and prevent bacterial growth, antibiotics can have significant unwanted impacts on the fish gut microbiome. The overall objective of this project was to assess the effects of erythromycin and an antibiotic mixture on fish gut microbiomes. The project was split into two experiments to assess gut microbiome in response to exposure with ERY alone or in mixture with other common antibiotics. The objectives of experiment 1 were to understand uptake and depuration of ERY in juvenile rainbow trout (RBT) over a 7 d uptake followed by a 7 d depuration period using three concentrations of ERY. Furthermore, throughout the study changes in gut microbiome response were assessed. In experiment 2, a follow-up study was conducted using an identical experimental design to assess the impacts of an antibiotic-mixture (ERY, ampicillin, metronidazole, and ciprofloxacin at 100 µg/g each). Here, three matrices were analyzed, with gut collected for 16s metabarcoding, plasma for untargeted metabolomics, and brain for mRNA-seq analysis. ERY was depurated from the fish relatively quickly and gut microbiome dysbiosis was observed at 7 d after exposure, with a slight recovery after the 7 d depuration period. A greater number of plasma metabolites was dysregulated at 14 d compared to 7 d revealing temporality compared to gut microbiome dysbiosis. Furthermore, several transformation products of antibiotics and biomarker metabolites were observed in plasma due to antibiotic exposure. Brain transcriptome revealed only slight alterations due to antibiotic exposure. The results of these studies will help inform aquaculture practitioners and risk assessors when assessing the potential impacts of antibiotics in fish feed and the environment, with implications for host health.
Project description:Difference in gut microbiome is linked with health, disease and eventually host fitness, however, the molecular mechanisms by which this variation affects the host fitness are not well characterized. Here, we modified the fish gut microbiota by using antibiotic and probiotic to address the effect of host microbiome on gene expression pattern by using transcriptome.
Project description:Compared to other fish models, miRNAs are currently most extensively studied and identified in zebrafish. Approximately 415 dre-miRNAs have been identified and several articles have studied some aspect of miRNA function in zebrafish such as their role in basic development and in disease pathways. However, this field of research is in its infancy and the function of several dre-miRNAs, as well as their tissue-specific expression profile, are yet to be defined. In this study, the liver and gut were dissected (wildtype/untreated fish), total and small RNA were extracted, mRNA and miRNA libraries constructed and subjected to high throughput sequencing (HTS) using standard approaches. We carried out differential expression (DE) analysis and compared liver miRNA expression to gut using established bioinformatics pipelines. Through bioinformatics analysis, known and putative novel miRNAs were identified. Finally, we constructed a “miRNA matrix” that connects both total RNA-Seq and miRNA-Seq.
Project description:Dietary fats have been shown to affect gut microbiota composition and aging gene transcription of middle-aged rats at a normal dose, but little is known about such an effect on gut barrier. In colon, the main component of mucus layer is Muc2, produced by the goblet cells. This study investigated the changes in Muc2 expression, goblet cells proliferation, TLRs and inflammatory cytokines in the colon of middle-aged rats. Proteome technology was applied to explore the possible molecular mechanisms. The results indicated that intake of fish oil at a normal dose downregulated colonic Muc2 expression, and this negative effect of fish oil probably involved the suppression of mucin glycosylation process.
Project description:This paper presents data from a 5-week feeding trial in which Ballan wrasse was fed either a reference diet, or the identical diet supplemented with i) the antinutrient soya saponin (0.7%) ii) a commercial prebiotic (Aquate™ SG, 0.4%) or iii) a combination of soya saponin and prebiotics. Blood, tissue and gut content from four separate intestinal segments were sampled from 6 fish per duplicate tank. Gut health and digestive functions were evaluated by various endpoint measurements employing biochemical and histomorphological tools as well as global gene expression profiling. No significant differences in fish growth were seen between the four dietary groups. Saponin supplementation, both alone and in combination with prebiotics, increased weight indices of two mid gut segments (IN2 and IN3) and decreased blood plasma glucose, cholesterol and total protein. Dry matter of intestinal content and activity of digestive enzymes were not affected by diet. Histomorphological analyses revealed clear structural alterations in the gut of fish fed saponin, both alone and in combination with prebiotics. The results indicated a progressing inflammation with increased infiltration by immune cells particularly into the distal parts of the intestine. Gene expression profiles obtained by RNA sequencing and quantitative PCR mirrored the histological and biochemical changes induced by the saponin load. The work has provided novel basic knowledge on the anatomy, digestive and immune function of the Ballan wrasse intestine. Additionally, the study demonstrated that Ballan wrasse gut health and digestive function may be markedly affected by diet composition.