Project description:The establishment of left-right patterning in mice occurs at a transient structure called the embryonic node or left-right organizer (LRO). Previous analysis of the LRO has proven challenging due to the small cell number and transient nature of this structure. Here, we seek to overcome these difficulties to define the transcriptome of the LRO. Specifically, we used single cell RNA sequencing of 0-1 somite embryos to identify LRO enriched genes which were compared to bulk RNA sequencing of LRO cells isolated by fluorescent activated cell sorting. Gene ontology analysis indicated an enrichment of genes associated with cilia and laterality terms. Furthermore, comparison to previously identified LRO genes identified 127 novel LRO genes, including Ttll3, Syne1 and Sparcl1, for which the expression patterns were validated using whole mount in situ hybridization. This list of novel LRO genes will be a useful resource for further studies on LRO morphogenesis, the establishment of laterality and the genetic causes of heterotaxy.
Project description:Heterotaxy is a disorder characterized by severe congenital heart defects (CHDs) and abnormal left-right patterning in other thoracic or abdominal organs. Clinical and research-based genetic testing has previously focused on evaluation of coding variants to identify causes of CHDs, leaving non-coding causes of CHDs largely unknown. Variants in the transcription factor Zinc finger of the cerebellum 3 (ZIC3) cause X-linked heterotaxy. We identified an X-linked heterotaxy pedigree without a coding variant in ZIC3. Whole genome sequencing revealed a deep intronic variant (ZIC3 c.1224+3286A>G) predicted to alter RNA splicing. An in vitro minigene splicing assay confirmed the variant acts as a cryptic splice acceptor. CRISPR/Cas9 served to introduce the ZIC3 c.1224+3286A>G variant into human embryonic stem cells demonstrating pseudoexon inclusion caused by the variant. Surprisingly, Sanger sequencing of the resulting ZIC3 c.1224+3286A>G amplicons revealed several isoforms, many of which by-pass the normal coding sequence of the third exon of ZIC3, causing a disruption of a DNA binding domain and a nuclear localization signal. Short- and long-read mRNA sequencing confirmed these initial results and identified additional splicing patterns. Assessment of four isoforms determined abnormal functions in vitro and in vivo while treatment with a splice-blocking morpholino partially rescued ZIC3. These results demonstrate that pseudoexon inclusion in ZIC3 can cause heterotaxy and provide functional validation of non-coding disease causation. Our results suggest the importance of non-coding variants in heterotaxy and the need for improved methods to identify and classify non-coding variation that may contribute to CHDs.
Project description:Left and Right phrenic nerves, which innervate the left and right diaphragm muscles, exhibit different innervation patterns. This left/right (L/R) asymmetry is established at the onset of innervation by a developmental program that requires Nodal. Phenotype analysis suggests that the cervical motoneurons, which innervate the diaphragm, have a L/R imprint that contributes to set the L/R asymmetries of innervation. We used microarray to analyze the expression profile of left and right cervical motoneurons before diaphragm innervation
Project description:Congenital heart disease (CHD) is the most common birth defect, yet its genetic causes continue to be obscure. Fibroblast growth factor receptor 4 (FGFR4) recently emerged in a large patient exome sequencing study as a candidate disease gene for CHD and specifically heterotaxy. In heterotaxy, patterning of the left-right (LR) body axis is compromised, frequently leading to defects in the heart's LR architecture and severe CHD. FGF ligands like FGF8 and FGF4 have been previously implicated in LR development with roles ranging from formation of the laterality organ [LR organizer (LRO)] to the transfer of asymmetry from the embryonic midline to the lateral plate mesoderm (LPM). However, much less is known about which FGF receptors (FGFRs) play a role in laterality. Here, we show that the candidate heterotaxy gene FGFR4 is essential for proper organ situs in Xenopus and that frogs depleted of fgfr4 display inverted cardiac and gut looping. Fgfr4 knockdown causes mispatterning of the LRO even before cilia on its surface initiate symmetry-breaking fluid flow, indicating a role in the earliest stages of LR development. Specifically, fgfr4 acts during gastrulation to pattern the paraxial mesoderm, which gives rise to the lateral pre-somitic portion of the LRO. Upon fgfr4 knockdown, the paraxial mesoderm is mispatterned in the gastrula and LRO, and crucial genes for symmetry breakage, like coco, xnr1, and gdf3 are subsequently absent from the lateral portions of the organizer. In summary, our data indicate that FGF signaling in mesodermal LRO progenitors defines cell fates essential for subsequent LR patterning.