Project description:We sequenced mRNA from the control and heat treatments leaves of Populus tomentosa using the Illumina HiSeq4000 platform to generate the transcriptome dynamics that may serve as a gene expression profile blueprint for different response patterns under control and heat stress in Populus tomentosa.
Project description:We take the two year old plant for sampling.Use the Affymetrix poplar gene chip to elucidate the gene functions and mechanisms in Populus tomentosa shoot apex and mature xylem. We used microarrays to detail the global programme of gene expression in shoot apex and mature xylem. Populus tomentosa shoot apex and mature xylem were taken for RNA extraction and hybridization on Affymetrix microarrays.CB2009304-C and CB2009304-D from shoot apex, CB2009304-G and CB2009304-H from mature xylem.
Project description:Analysis of Paulownia tomentosa cambial tissues at gene expression level. The hypothesis tested in the present study was that miRNAs can regulate the development of the vascular cambium.The results provide new insights into the important regulatory functions of miRNAs in vascular cambium development and wood formation in conifers.
Project description:We take the two year old plant for sampling. Use the Affymetrix poplar gene chip to elucidate the gene functions and mechanisms in Populus tomentosa newly formed developing xylem and lignified xylem. We used microarrays to detail the global programme of gene expression in newly formed developing xylem and lignified xylem. Populus tomentosa newly formed developing xylem and lignified xylem were taken for RNA extraction and hybridization on Affymetrix microarrays. CB2009304-A and CB2009304-B from newly formed developing xylem, CB2009304-G and CB2009304-H from lignified xylem.
Project description:The atmosphere CO2 concentration keeps increasing every year. Use the Affymetrix poplar gene chip to confirm the expression changes in key genes in the triploid white poplar due to the influence of elevated CO2 concentrations. We used microarrays to detail the global programme of gene expression under normal and elevated CO2 concentrations. Gene expression of triploid white poplar ((P. tomentosa Ã? P. bolleanaï¼?Ã? P. tomentosa) leaves were investigated by using the Affymetrix poplar genome gene chip, after grown in controlled environment chambers under three different CO2 concentrations. Poplar leaves were subjected to normal CO2 concentrations (T0) and elevated CO2 concentrations (T1, 550 ppm and T2, 720 ppm) treatments three months.