Project description:Dendritic cells (DCs) express high levels of PD-L1 in the tumor microenvironment and draining lymph nodes. Here, we explore the roles of PD-L1 signaling during immunogenic chemotherapy. DC-conditional PD-L1 knockout mice were inoculated with MC38-OVA tumors and treated with doxorubicin. T cells were isolated from draining lymph node for single cell RNA sequencing.
Project description:Dendritic cells (DCs) express high levels of PD-L1 in the tumor microenvironment. However, the physiological functions of PD-L1 on DCs remain incompletely understood. Here, we explored the roles of PD-L1 signaling in dendritic cells. PD-L1 was knocked out in DC2.4 cells and transcriptional profiles were analyzed.
Project description:Despite the remarkable success of programmed death 1/PD-L1 inhibition in tumor therapy, only a minority of patients benefits from it. Previous studies suggest the anti-PD-1 treatment failure may attribute to the intrinsic functions of PD-L1 in cancer cells. Here, we established a genome-wide CRISPR synthetic lethality screen to systematic explore the PD-L1 intrinsic function in head and neck squamous cell carcinoma (HNSCC) cells. Ferroptosis related genes were identified to be essential for PD-L1 deficient cell viability. Genetic and pharmacological induction of ferroptosis accelerated cell death in PD-L1 knockout cells. PD-L1 knockout cells were also highly susceptible to immunogenic ferroptosis in vitro and in vivo. Mechanistically, nuclear PD-L1 transcriptionally activated SOD2 expression to maintain redox homeostasis. Importantly, the lower ROS and ferroptosis were observed in HNSCC patients with the higher expression of PD-L1. In summary, our study illustrates that PD-L1 confers ferroptosis resistance by activating SOD2-meidated redox homeostasis in HNSCC cells, indicating an enhanced therapeutic effect can be achieved by targeting the intrinsic PD-L1 function during immunotherapy.
Project description:Despite the remarkable success of programmed death 1/PD-L1 inhibition in tumor therapy, only a minority of patients benefits from it. Previous studies suggest the anti-PD-1 treatment failure may attribute to the intrinsic functions of PD-L1 in cancer cells. Here, we established a genome-wide CRISPR synthetic lethality screen to systematic explore the PD-L1 intrinsic function in head and neck squamous cell carcinoma (HNSCC) cells. Ferroptosis related genes were identified to be essential for PD-L1 deficient cell viability. Genetic and pharmacological induction of ferroptosis accelerated cell death in PD-L1 knockout cells. PD-L1 knockout cells were also highly susceptible to immunogenic ferroptosis in vitro and in vivo. Mechanistically, nuclear PD-L1 transcriptionally activated SOD2 expression to maintain redox homeostasis. Importantly, the lower ROS and ferroptosis were observed in HNSCC patients with the higher expression of PD-L1. In summary, our study illustrates that PD-L1 confers ferroptosis resistance by activating SOD2-meidated redox homeostasis in HNSCC cells, indicating an enhanced therapeutic effect can be achieved by targeting the intrinsic PD-L1 function during immunotherapy.
Project description:Blocking the PD-1/PD-L1 immunosuppressive pathway has shown promise in the treatment of certain cancers including melanoma. This study investigates differences in the gene expression profiles of human melanomas that do or do not display the immunosuppressive protein PD-L1. Further understanding of genes expressed within the tumor microenvironment of PD-L1+ tumors may lead to improved rationally designed treatments. Gene expression profiling was performed on total RNA extracted by laser capture microdissection from 11 archived formalin-fixed paraffin-embedded (FFPE) melanoma specimens, 5 of which were PD-L1 positive and 6 PD-L1 negative. Details of the design, and the gene signatures found are given in the paper associated with this GEO Series: Janis M. Taube, Geoffrey D. Young, Tracee L. McMiller, Shuming Chen, January T. Salas, Theresa S. Pritchard, Haiying Xu, Alan K. Meeker, Jinshui Fan, Chris Cheadle, Alan E. Berger, Drew M. Pardoll, and Suzanne L. Topalian, Differential expression of immune-regulatory genes associated with PD-L1 display in melanoma: implications for PD-1 pathway blockade, Clin Cancer Res 2015, in press.
Project description:Programmed cell death 1 ligand 1 (PD-L1) is known to suppress immune system and to be an unfavorable prognostic factor in ovarian cancer. The purpose of this study was to elucidate the function of PD-L1 in peritoneal dissemination. Tumor cell lysis by CTLs was attenuated when PD-L1 on tumor cells was overexpressed and promoted when it was silenced. PD-L1 overexpression also inhibited gathering and degranulation of CTLs. Gene expression profile of mouse CTLs caused by PD-L1-overexpressing ovarian cancer was related to human CTLs exhaustion. In mouse ovarian cancer dissemination models, depleting PD-L1 expression on tumor cells resulted in inhibited tumor growth in the peritoneal cavity and prolonged survival. Restoring immune function by inhibiting immune-suppressive factors such as PD-L1 may be a promising therapeutic strategy for peritoneal dissemination. Genome-wide transcriptional changes in OT-1 mouse CD8+ T cells that were co-incubated with OVA peptide-loaded ID8 mouse ovarian cancer cell lines. CTLs from 4 mice were devided into 2 groups, and co-incubated with PD-L1-overexpressed ID8 or PD-L1-depleted ID8.
Project description:Lung cancer is a major global health problem, as it is the leading cause of cancer- related deaths worldwide. Non-small-cell lung cancer (NSCLC), the most common form, is a heterogeneous disease with adenocarcinoma and squamous cell carcinoma being the predominant subtypes. Immune-inhibiting interaction of Programmed cell death-ligand 1 (PD-L1) with programmed cell death-protein 1 (PD-1) causes checkpoint mediated immune evasion and is, accordingly, an important therapeutic target in cancer. In NSCLC, improved understanding of PD-1/PD-L1 checkpoint blockade-responsive biology is warranted. We aimed to identify the landscape of immune cell infiltration in primary lung adeno- carcinoma (LUAD) in the context of tumor PD-L1 expression and the extent of immune infiltration (“hot” vs. “cold” phenotype). Therefore, the study comprises LUAD cases (n=138) with “hot” and “cold” tumor immune phenotype and positive and negative tumor PD-L1 expression, respectively. Tumor samples were immunohistochemically analyzed for expression of PD-L1, CD4 and CD8 and further analyzed on transcriptomic level by Nanostring nCouter Pan Cancer Immune Profiling Panel. We detected significantly differentially expressed genes associated with PD-L1 positive and “hot” versus PD-L1 negative and “cold” phenotype. The presented study illustrates novel aspects of PD-L1 regulation, with potential biological relevance, as well as relevance for immunotherapy response stratification.
Project description:PD-L1 Inhibitor Regulates the miR-33a-5p/PTEN Signaling Pathway and Can Be Targeted to Sensitize Glioblastomas to Radiation. Glioblastoma (GBM) is the most common and lethal brain tumor in adults. Ionizing radiation (IR) is a standard treatment for GBM patients and results in DNA damage. However, the clinical efficacy of IR is limited due to therapeutic resistance. The programmed death ligand 1 (PD-L1) blockade has a shown the potential to increase the efficacy of radiotherapy by inhibiting DNA damage and repair responses. The miR-33a-5p is an essential microRNA that promotes GBM growth and self-renewal. In this study, we investigated whether a PD-L1 inhibitor (a small molecule inhibitor) exerted radio-sensitive effects to impart an anti-tumor function in GBM cells by modulating miR-33a-5p. U87 MG cells and U251 cells were pretreated with PD-L1 inhibitor. The PD-L1 inhibitor-induced radio-sensitivity in these cells was assessed by assaying cellular apoptosis, clonogenic survival assays, and migration. TargetScan and luciferase assay showed that miR-33a-5p targeted the phosphatase and tensin homolog (PTEN) 3' untranslated region. The expression level of PTEN was measured by western blotting, and was also silenced using small interfering RNAs. The levels of DNA damage following radiation was measured by the presence of γ-H2AX foci, cell cycle, and the mRNA of the DNA damage-related genes, BRCA1, NBS1, RAD50, and MRE11. Our results demonstrated that the PD-L1 inhibitor significantly decreased the expression of the target gene, miR-33a-5p. In addition, pretreatment of U87 MG and U251 cells with the PD-L1 inhibitor increased radio-sensitivity, as indicated by increased apoptosis, while decreased survival and migration of GBM cells. Mir-33a-5p overexpression or silencing PTEN in U87 MG and U251 cells significantly attenuated PD-L1 radiosensitive effect. Additionally, PD-L1 inhibitor treatment suppressed the expression of the DNA damage response-related genes, BRCA1, NBS1, RAD50, and MRE11. Our results demonstrated a novel role for the PD-L1 inhibitor in inducing radio- sensitivity in GBM cells, where inhibiting miR-33a-5p, leading to PTEN activated, and inducing DNA damage was crucial for antitumor immunotherapies to treat GBM.