Project description:Self-inhibition of pollen tubes plays a key role in SI, but the underlying mechanism in Camellia oleifera is poorly understood. Collection of secreted proteins from Camellia oleifera pollen tubes and ovaries for high-throughput sequencing.
Project description:We report the expression analysis of seed kernel in Camellia oleifera cultivars. In total 221 cultivars are sequenced by the Illumina sequencing experiments to obtain the gene expression profiles.
Project description:To identify the important genetic resources of tea oil accumulation and quality formation in Camellia oleifera, an important woody edible oil tree native to Southern China, we have designed and customized an expression profile chip of C. oleifera with 8×60 K on the basis of transcriptome sequencing of multiple tissue samples including kernels, roots, and leaves from multiple varieties. we used the mcroarrays to determine the gene expressions in kernel development of C. oleifera elite varieties'Huashuo' , 'Huaxin' , 'Huajin' and 'Jujian' respectively. Microarray results indicated a total of 10710 gene probes showed stable differential expression in the comparation of August vs June and 9987 in the comparation of October vs August. PATHWAY enrichment results of DEGs indicated that the oil synthesis and accumulation occured in the whole kernel development of C. oleifera, but were mainly concentrated from the nutrition high-speed synthesis period to the seed mature period, which was consistent with the variation trend of oil content and fatty acide composition in C. oleifera kernel development.
Project description:<p>The section <em>Oleifera</em> (Theaceae) has attracted attention for the high levels of unsaturated fatty acids found in its seeds. Here, we report the chromosome-scale genome of the sect. <em>Oleifera</em> using diploid wild <em>Camellia lanceoleosa</em> with a final size of 3.00 Gb and an N50 scaffold size of 186.43 Mb. Repetitive sequences accounted for 80.63% and were distributed unevenly across the genome. <em>Camellia lanceoleosa</em> underwent a whole-genome duplication event approximately 65 million years ago (65 Mya), prior to the divergence of <em>C</em>. <em>lanceoleosa</em> and <em>Camellia sinensis</em> (approx. 6-7 Mya). Syntenic comparisons of these two species elucidated the genomic rearrangement, appearing to be driven in part by the activity of transposable elements. The expanded and positively selected genes in <em>C</em>. <em>lanceoleosa</em> were significantly enriched in oil biosynthesis, and the expansion of homomeric <em>acetyl-coenzyme A carboxylase</em> (<em>ACCase</em>) genes and the seed-biased expression of genes encoding heteromeric ACCase, diacylglycerol acyltransferase, glyceraldehyde-3-phosphate dehydrogenase and stearoyl-ACP desaturase could be of primary importance for the high oil and oleic acid content found in <em>C. lanceoleosa</em>. Theanine and catechins were present in the leaves of <em>C</em>. <em>lanceoleosa</em>. However, caffeine can not be dectected in the leaves but was abundant in the seeds and roots. The functional and transcriptional divergence of genes encoding SAM-dependent <em>N</em>-methyltransferases may be associated with caffeine accumulation and distribution. Gene expression profiles, structural composition and chromosomal location suggest that the late-acting self-incompatibility of <em>C. lanceoleosa</em> is likely to have favoured a novel mechanism co-occurring with gametophytic self-incompatibility. This study provides valuable resources for quantitative and qualitative improvements and genome assembly of polyploid plants in sect. <em>Oleifera</em>.</p>