Project description:Despite significant advancements in cancer immunotherapy, many patients continue to respond poorly. Novel therapeutic strategies and drugs are urgently needed. Here, we found that CYP2E1 is significantly upregulated in M2 macrophages. The CYP2E1 inhibitor, Q11, could inhibit M2 macrophage polarization, while CYP2E1 overexpression could promote it. Increased levels of CYP2E1 and M2 macrophages in the tumor microenvironment of HCC patients correlate with poor prognosis. Q11 could inhibit tumor cells by targeting M2 macrophages rather than directly attacking tumor cells. Both Q11 and Cyp2e1 knockout could effectively suppress tumor growth. Q11 reduces the production of CYP2E1 metabolites (±)9(10)-DiHOME and (±)12(13)-DiHOME, thus attenuating PPARγ activation and M2 macrophage polarization. In summary, our findings suggest that Q11 could suppress M2 macrophage polarization by modulating the CYP2E1/(±)9(10)-DiHOME or (±)12(13)-DiHOME/PPARγ axis, indicating that CYP2E1 inhibition may be a novel therapeutic strategy for HCC and positioning Q11 as a promising therapeutic agent.
Project description:To investigate whether differentially expressed genes induced by SIIN-Q11 were shared between lung CD11b+ and CD103+ DCs, we performed gene expression profiling analysis of lung CD11b+ and CD103+ DCs after intranasal SIIN-Q11.
Project description:To gain insights into the activation of LN DCs by intranasal SIIN-Q11, we conducted a transcriptional analysis on flow-sorted LN CD11b+ and CD103+ DCs
Project description:We sequenced and analyzed the genome of a highly inbred miniature Chinese pig strain, the Banna Minipig Inbred Line (BMI). we conducted whole genome screening using next generation sequencing (NGS) technology and performed SNP calling using Sus Scrofa genome assembly Sscrofa11.1.