Project description:The “ship of the desert”, the one-humped Arabian camel (Camelus dromedarius), has a remarkable capacity to survive in conditions of extreme heat without needing to drink water. One of the ways that this is achieved is through the actions of the antidiuretic hormone vasopressin (AVP) and the natriuretic hormone oxytocin (OXT), both of which are made in a specialised part of the brain called the hypothalamo-neurohypophyseal system (HNS), but exert their effects at the level of the kidney to, respectively, provoke water conservation and salt excretion. Interestingly, our electron microscopy studies have shown that the ultrastructure of the camel HNS changes according to season, suggesting that in the arid conditions of summer the dromedary’s HNS is in a state of permanent activation, in preparation for the likely prospect of water deprivation. Based on our camel genome sequence, we have carried out an RNAseq analysis of the camel HNS in summer and winter.
Project description:To investigate the central control of water homeostasis in the dromedary camel, we have performed transcriptomic studies on the supraoptic nucleus samples from camels under control (water ad libitum) and dehydrated (water deprivation for 20 days) conditions by RNA sequencing. We have identified genes that change in expression in response to hyperosmotic challenge and transcriptomic response networks that might be essential for adaptations of camel to live and thrive in aird desert environment.