Project description:While the unique symbiotic relationship between anemonefish and sea anemones is iconic, it is still not fully understood how anemonefish withstand and thrive within this venomous host environment. In this study we used a proteotranscriptomics approach to elucidate the proteinaceous toxin repertoire from the most popular host sea anemone Entacmaea quadricolor. Although 1251 different toxin or toxin-like RNA transcripts were expressed in E.quadricolor tentacles and 2736 proteins were detected in milked venom, only 135 (approx. 10%) of proteins in venom were classified as putative toxins. This work raises the perils of defining a dominant venom type based on transcriptomics data alone in sea anemones, as we found that the dominant venom type differed between the transcriptome and proteome data. Moreover, anemonefishes interact with sea anemone proteins, so it is important when determining the dominant toxin type to examine the peptides and proteins that are present in host sea anemone venom and mucus which anemonefishes are known to interact.
Project description:Cellular mechanisms responsible for the regulation of nutrient exchange, immune responses, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved, particularly with respect to the dinoflagellate symbiont. Here, we characterised proteomic changes in the native symbiont Breviolum minutum during colonisation of its host sea anemone Exaiptasia diaphana (‘Aiptasia’). We also compared the proteome of this native symbiont in the established symbiotic state with that of a non-native symbiont, Durusdinium trenchii. The onset of symbiosis between Aiptasia and B. minutum induced increased accumulation of symbiont proteins associated with acquisition of inorganic carbon and photosynthesis, nitrogen metabolism, micro- and macronutrient starvation, suppression of the host immune responses, tolerance to low pH, and management of oxidative stress. Such responses are consistent with a functional, persistent symbiosis. In contrast, D. trenchii predominantly showed elevated levels of immunosuppressive proteins, consistent with the view that this symbiont is an opportunist that forms a less beneficial, less well-integrated symbiosis with this model anemone. By adding this analyses of the symbiont proteins to the already known responses of the host proteome, our results provide a more holistic view of cellular processes that determine host-symbiont specificity and how differences in symbiont partners, native versus non-native symbionts, may impact the fitness of the cnidarian-dinoflagellate symbiosis in response to thermal stress. This PRIDE entry contains the Breviolum minutum data; Durusdinium trenchii data are uploaded in a separate entry with identical parameters.
Project description:Cellular mechanisms responsible for the regulation of nutrient exchange, immune responses, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved, particularly with respect to the dinoflagellate symbiont. Here, we characterised proteomic changes in the native symbiont Breviolum minutum during colonisation of its host sea anemone Exaiptasia diaphana (‘Aiptasia’). We also compared the proteome of this native symbiont in the established symbiotic state with that of a non-native symbiont, Durusdinium trenchii. The onset of symbiosis between Aiptasia and B. minutum induced increased accumulation of symbiont proteins associated with acquisition of inorganic carbon and photosynthesis, nitrogen metabolism, micro- and macronutrient starvation, suppression of the host immune responses, tolerance to low pH, and management of oxidative stress. Such responses are consistent with a functional, persistent symbiosis. In contrast, D. trenchii predominantly showed elevated levels of immunosuppressive proteins, consistent with the view that this symbiont is an opportunist that forms a less beneficial, less well-integrated symbiosis with this model anemone. By adding this analyses of the symbiont proteins to the already known responses of the host proteome, our results provide a more holistic view of cellular processes that determine host-symbiont specificity and how differences in symbiont partners, native versus non-native symbionts, may impact the fitness of the cnidarian-dinoflagellate symbiosis in response to thermal stress. This PRIDE entry contains the Durusdinium trenchii data; Breviolum minutum data are uploaded in a separate entry with identical parameters.
2024-01-18 | PXD045587 | Pride
Project description:Microbiome depletion and recovery in the sea anemone, Aiptasia, following antibiotic exposure
Project description:We utilized the eyeless sea anemone, Nematostella vectensis, to quantify gene expression differences between different colors of light (red, green, blue) and in constant darkness through comparisons of 96 transcriptomes
Project description:This SuperSeries is composed of the following subset Series: GSE22360: Transcriptomic adaptations to symbiotic life in cnidarians : symbiotic vs bleached Anemonia viridis sea anemones GSE22361: Endoderm- vs ectoderm-specific expression of symbiosis genes in the snakelocks sea anemone Refer to individual Series