Project description:In recent years, the scale culture of Chinese soft-shelled turtle has developed rapidly. However, diseases in aquaculture are the main problems affecting the rapid and healthy cultivation. Strengthening the immunity of Chinese soft-shelled turtles is extremely important to control the infection of pathogenic bacteria. Bacillus has attracted attention as a probiotic supplement in aquatic feeds.In our previous studies, we found that the addition of Bacillus subtilis B10 to diets could increase survival rate, daily weight gain (DG) and feed conversion ratio (FCR) of Chinese soft-shelled turtles, improving the activities of digestive enzyme and optimizing the microbial communities of intestinal in Chinese soft-shelled turtle.However, the study on the mechanism of Bacillus subtilis B10 in Chinese soft-shelled turtle culture remains rare. Therefore, in this study, we used Bacillus subtilis B10 to feed the turtle, and used RNA-seq to explore its mechanism.
Project description:Using 300K′-high density microarray covering the chinese cabbage whole genome, genome-wide expression analyses of cold stress conditions.
Project description:PURPOSE:To clarify the mechanism of the wax deficiency, the wax-less flowering Chinese cabbage doubled-haploid (DH) line ‘CX001’ and Chinese cabbage DH line ‘FT’, obtained from isolated microspore culture, were used in the experiments. Transcriptome analysis indicated that BraA09g066480.3C was expressed in ‘FT’ but not in ‘CX001’.The work presented herein demonstrated that BraA09g066480.3C was the causal gene for wax-less flowering Chinese cabbage ‘CX001’
Project description:Leafy head is the main product of Chinese cabbage, and also is the primary character to determine its yield and quality. Cloning and characterizing key genes involved in leafy head formation is imperative for varietal improvement in Chinese cabbage. From an EMS mutagenesis population of a heading wild-type ‘FT’ of Chinese cabbage, we identified two allelic non-heading mutants, nhm3-1 and nhm3-2. Genetic analysis showed that the mutant character was controlled by a single recessive gene. MutMap and Kompetitive Allele Specific PCR genotyping results revealed that BraA05g012440.3C encoding an ent-kaurenoic acid oxidase 2 which functions in the GA biosynthetic pathway, was the causal gene for leafy-head formation, and we named it as BrKAO2. Two kinds of non-synonymous mutations in the second exon of BrKAO2 were responsible for the nhm3-1 and nhm3-2 mutant phenotype, respectively. BrKAO2 was expressed at all stages of leaf development, and there was no significant difference between the wild-type ‘FT’ and the mutants nhm3-1 and nhm3-2. The mutant phenotype was restored to the wild-type through the application of exogenous GA3. RNA-Seq was performed on the rosette leaves of wild-type ‘FT’, nhm3-1 and nhm3-1+GA3 plants, and a number of key genes involving in GA biosynthesis, signal transduction and leafy head development were identified. These findings indicated that BrKAO2 is responsible for leafy head formation of nhm3, and a new mechanism of the leafy head formation in Chinese cabbage was proposed.
Project description:The transition from vegetative growth to reproductive growth involves many pathways. Vernalization is crucial to the formation of floral organs, the regulation of flowering time and plant breeding. The purpose of this study was to identify the mRNA, microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) related to vernalization of Chinese cabbage, and to construct a competitive endogenous RNA (ceRNA) network, so as to provide valuable information for exploring the molecular mechanism of vernalization of Chinese cabbage. Results: The results of whole-transcriptome sequencing showed that 2702 mRNAs, 151 lncRNAs, 16 circRNA, and 233 miRNAs were differentially expressed in vernalized (‘Ver’) and non-vernalized (‘Nor’) seeds of Chinese cabbage. Some transcription factors and regulatory proteins that play important roles in vernalization pathway have been identified, such as the transcription factors of WRKY, MYB, NAC, bHLH, and MADS-box, zinc finger protein CONSTANS like gene and B3 domain protein. We constructed vernalization-related ceRNA-miRNA-target gene network and obtained 199 pairs of ceRNA relationships, including 108 DEmiRNA-DEmRNA, 67 DEmiRNA-DElncRNA, and 12 DEmiRNA-DEcircRNA interactions in Chinese cabbage. Meanwhile, several important vernalization-related genes and their interacting lncRNAs, circRNAs, and miRNAs were identified, which were involved in the regulation of flowering time, floral organ formation, bolting and flowering. Conclusions: The candidate differentially expressed mRNA, miRNA, lncRNA and circRNA for vernalization of Chinese cabbage were identified by the whole-transcriptome sequencing, and the ceRNA network was constructed. This study laid a foundation for further study on the molecular mechanism of vernalization in Chinese cabbage.
Project description:The transition from vegetative growth to reproductive growth involves many pathways. Vernalization is crucial to the formation of floral organs, the regulation of flowering time and plant breeding. The purpose of this study was to identify the mRNA, microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) related to vernalization of Chinese cabbage, and to construct a competitive endogenous RNA (ceRNA) network, so as to provide valuable information for exploring the molecular mechanism of vernalization of Chinese cabbage. Results: The results of whole-transcriptome sequencing showed that 2702 mRNAs, 151 lncRNAs, 16 circRNA, and 233 miRNAs were differentially expressed in vernalized (‘Ver’) and non-vernalized (‘Nor’) seeds of Chinese cabbage. Some transcription factors and regulatory proteins that play important roles in vernalization pathway have been identified, such as the transcription factors of WRKY, MYB, NAC, bHLH, and MADS-box, zinc finger protein CONSTANS like gene and B3 domain protein. We constructed vernalization-related ceRNA-miRNA-target gene network and obtained 199 pairs of ceRNA relationships, including 108 DEmiRNA-DEmRNA, 67 DEmiRNA-DElncRNA, and 12 DEmiRNA-DEcircRNA interactions in Chinese cabbage. Meanwhile, several important vernalization-related genes and their interacting lncRNAs, circRNAs, and miRNAs were identified, which were involved in the regulation of flowering time, floral organ formation, bolting and flowering. Conclusions: The candidate differentially expressed mRNA, miRNA, lncRNA and circRNA for vernalization of Chinese cabbage were identified by the whole-transcriptome sequencing, and the ceRNA network was constructed. This study laid a foundation for further study on the molecular mechanism of vernalization in Chinese cabbage.
Project description:We conducted a RNA-Seq analysis of MeJA-treated Chinese cabbage leaf transcriptome. Total 14,619,469 sequence reads were generated to produce 27,461 detected genes, among which 1,451 genes were up-regulated and 991 genes were down-regulated as differentially expressed genes (DEGs) (log2 ratio â¥1, false discovery rate â¤0.001). More than 90% of the DEGs (2,278) were between 1.0- and 3.0-fold (log2 ratio). The most highly represented pathways by 1,674 annotated DEGs were related to âmetabolic pathwaysâ (333 members), âribosomeâ (314 members), âbiosynthesis of secondary metabolitesâ (218 members), âplant-pathogen interactionâ (146 members), and âplant hormone signal transductionâ (99 members). Fourteen genes involved in JA biosynthesis pathway were up-regulated. As many as 182 genes for the biosynthesis of several secondary metabolites were induced, and the level of indole glucosinolate was highly increased by MeJA treatment. The genes encoding sugar catabolism and some amino acids synthesis were up-regulated, which could supply structural intermediates and energy for the biosynthesis of secondary metabolites. The results demonstrated a high degree of transcriptional complexity with dynamic coordinated changes in global gene expression of Chinese cabbage in response to MeJA treatment. It expands our understanding of the complex molecular events on JA-induced plant resistance and accumulation of secondary metabolites. It also provides a foundation for further studies on the molecular mechanisms of different pathways in other Brassica crops under MeJA treatment. Transcriptomic analysis of MeJA-treated Chinese cabbage leaf
Project description:Next-generation sequencing has been applied on seedling of two genotypes of noheading Chinese cabbage, Huaq and Wut. The goals of this study are to compare the different expression of small RNAs which is possible effect the phynotype of close genetic relation cultivars.