Project description:Plants have a long history of use for their medicinal properties. The complexity of botanical extracts presents unique challenges and necessitates the application of innovative approaches to correctly identify and quantify bioactive compounds. With this study, we employed untargeted metabolomics to explore the antimicrobial activity of the botanical Rumex crispus (yellow dock), a member of the Polygonaceae family that is used as an herbal remedy for bacterial infections. Ultra high-performance liquid chromatography coupled to high resolution mass-spectrometry (UPLC-MS) was used to identify and quantify the known antimicrobial compound emodin. In addition, we used biochemometric approaches to integrate data measuring antimicrobial activity from R. crispus root starting material and fractions against methicillin resistant Staphylococcus aureus (MRSA) with UPLC-MS data. Our results support the hypothesis that multiple constituents, including the anthraquinone emodin, contribute to the antimicrobial activity of R. crispus against MRSA.