Project description:The present study utilized patient-derived “cell-line” model systems treated with anti-craving drugs that are used to treat alcohol use disorder (AUD) as “molecular probes” to help identify molecular mechanisms associated with craving and AUD treatment outcomes.
Project description:Acamprosate is an anti-craving drug used in alcohol use disorder (AUD) pharmacotherapy. However, only a subset of patients achieves optimal treatment outcomes. The identification of predictive biomarkers of acamprosate treatment response in patients with AUD would be a substantial advance in addiction medicine. We designed this study to use proteomics data as a quantitative biological trait as a step toward identifying inflammatory modulators that might be associated with acamprosate treatment outcomes. The NIAAA-funded Mayo Clinic Center for the Individualized Treatment of Alcoholism study had previously recruited 442 AUD patients who received three months of acamprosate treatment. However, only 267 subjects returned for the 3-month follow-up visit and, as a result, had treatment outcome information available. Baseline alcohol craving intensity was the most significant predictor of acamprosate treatment outcomes. Baseline plasma TNFSF10 concentration was associated with alcohol craving intensity and variation in acamprosate treatment outcomes among AUD patients. We also performed RNA sequencing using baseline peripheral blood mononuclear cells from AUD patients with known acamprosate treatment outcomes which revealed that inflammation-related pathways were highly associated with relapse to alcohol use during the three months of acamprosate treatment. These observations represent an important step toward advancing our understanding of the pathophysiology of AUD and molecular mechanisms associated with acamprosate treatment response. In conclusion, applying omics-based approaches may be a practical approach for identifying biologic markers that could potentially predict alcohol craving intensity and acamprosate treatment response.
Project description:Excessive alcohol consumption is a leading cause of preventable death worldwide. Neurobiological mechanisms associated with alcohol use disorder (AUD) remain insufficiently understood. Here, we provide RNA-sequencing data generated in nucleus accumbent and dorsolateral prefrontal cortex, from 114 deceased individuals: 58 AUD cases, 56 non-AUD controls. DNA methylation data on many of these same individuals is available (see GEO accession number GSE252501).
Project description:Alcohol use disorder (AUD) is a life-threatening disease characterized by compulsive drinking, cognitive deficits, and social impairment that continue despite negative consequences, which are driven by dysfunction of cortical areas, such as the orbitofrontal cortex (OFC), that normally balances decisions related to reward and risk. In this study, proteomics and machine learning analysis of post-mortem OFC brain samples collected from individuals with AUD revealed dysregulation of presynaptic (e.g., AP2A1) and mitochondrial proteins that predicted the occurrence and severity of AUD. Alcohol-sensitive OFC proteins also mapped to abnormal social behaviors and interactions. Validation using reverse genetics, we found that prefrontal Ap2a1 regulates alcohol drinking in genetically diverse mouse strains. Furthermore, we demonstrated sexual dimorphism in human OFC proteins that regulate extracellular matrix structure and signaling. Together, these findings highlight the impact of excessive alcohol consumption on the human OFC proteome and identify important cross-species cortical mechanisms underlying AUD.
Project description:Purpose: The goal of this study to examine mRNA transcriptomic changes in reward-related brain regions of subjects with alcohol use disorder. Methods: Total RNAs were extracted from postmortem putamen of 12 AUD and 12 control subjects. rRNA depletion RNA sequencing was performed and the sequence reads were processed using the bulk RNA-seq processing pipeline Pipeliner workflow (Federico et al. Front Genet 2019; 10, 614). AUD-associated mRNA transcriptomic changes were analyzed by the Limma-Voom method. Results: Differentially expressed mRNAs (absolute FC>2.0 & P<0.05) were identified in postmortem putamen of subjects with alcohol use disorder (AUD). Chronic alcohol consumption may alter mRNA transcriptome profiles in reward-related brain regions, resulting in alcohol-induced neuroadaptations.
Project description:Purpose: The goal of this study to examine mRNA transcriptomic changes in reward-related brain regions of subjects with alcohol use disorder. Methods: Total RNAs were extracted from postmortem amygdala of 12 AUD and 12 control subjects. rRNA depletion RNA sequencing was performed and the sequence reads were processed using the bulk RNA-seq processing pipeline Pipeliner workflow (Federico et al. Front Genet 2019; 10, 614). AUD-associated mRNA transcriptomic changes were analyzed by the Limma-Voom method. Results: Differentially expressed mRNAs (absolute FC>2.0 & P<0.05) were identified in postmortem amygdala of subjects with alcohol use disorder (AUD). Chronic alcohol consumption may alter mRNA transcriptome profiles in reward-related brain regions, resulting in alcohol-induced neuroadaptations.
Project description:Purpose: The goal of this study to examine mRNA transcriptomic changes in reward-related brain regions of subjects with alcohol use disorder. Methods: Total RNAs were extracted from postmortem cerebellum of 12 AUD and 12 control subjects. rRNA depletion RNA sequencing was performed and the sequence reads were processed using the bulk RNA-seq processing pipeline Pipeliner workflow (Federico et al. Front Genet 2019; 10, 614). AUD-associated mRNA transcriptomic changes were analyzed by the Limma-Voom method. Results: Differentially expressed mRNAs (absolute FC>2.0 & P<0.05) were identified in postmortem cerebellum of subjects with alcohol use disorder (AUD). Chronic alcohol consumption may alter mRNA transcriptome profiles in reward-related brain regions, resulting in alcohol-induced neuroadaptations.