Project description:Membrane bioreactor (MBR) systems are typically known different from conventional activated sludge (CAS) systems in operational parameters, while current knowledge of their microbial differentiations is barely sufficient. To this end, the current study was launched to address the differences of the overall functional genes of an oxidation ditch (OD) and an MBR running parallelly at full-scale using a functional gene array-GeoChip 4.2. Two full-scale wastewater treatment systems applying the processes of oxidation ditch (OD) and membrane bioreactor (MBR) were investigated. They treated identical wastewater at the same scale. 12 mixed-liquor suspended sludge (MLSS) samples collected daily on 12 consecutive days from each system were analyzed by GeoChip 4.2.
Project description:To understand microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs) and the effects of environmental factors on their structure, 12 activated sludge samples were collected from four WWTPs in Beijing. GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes. The results showed that, for each gene category, such as egl, amyA, nir, ppx, dsrA sox and benAB, there were a number of microorganisms shared by all 12 samples, suggestive of the presence of a core microbial community in the activated sludge of four WWTPs. Variance partitioning analyses (VPA) showed that a total of 53% of microbial community variation can be explained by wastewater characteristics (25%) and operational parameters (23%), respectively. This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs.