Project description:Integrin b1-deficient mice have a defect in the differentiation of MZ B cells and plasma cells.We performed a genome-wide transcriptome analysis of ex vivo-sorted Fo B, transitional B and MZ B cells of in Integrin b1 KO and Integrin b1 WT mice. We also performed invitro culture of CD93+ (AA4.1+) transitional B cells to study the role of PI3 Kinase signalling.
Project description:Integrins are extracellular matrix receptors comprised of an a and b subunit that connect and mediate signaling between cells and the surrounding matrix. In organogenesis of epithelial tissues, the b1 integrin subunit regulates essential epithelial cell functions, but the role of b1 integrin in epithelial repair is poorly understood. To define the role of b1 integrin during alveolar repair, we challenged b1 integrin deficient mice with intratracheal lipopolysaccharide, resulting in increased mortality with emphysematous lungs 21 days following injury. The alveolar barrier was repopulated with an overabundance of type 2 alveolar epithelial cells, with reduced numbers of elongated alveolar type 1 cells, suggesting b1 integrin is required for type 2 to type 1 epithelial transition. Consistent with this finding, b1 deficient type 2 epithelial cells proliferated at increased rates throughout repair, lacked actin-rich cellular protrusions necessary for lateral cellular extension, and exhibited transcriptomic dysregulation of adherens junction and actin polymerization pathways. Finally, we show that b1 integrin balances actin polymerization versus stabilization through GTPase activation. Taken together, these data support a novel role for b1 integrin in re-establishing the alveolar niche after injury through modulation of type 2 epithelial cell proliferation and cytoskeletal-dependent cell shape change.
Project description:RNA microarray profiling analysis was performed on different ex-vivo human splenic B cell subsets (M-^SNaM-oveM-^T, marginal zone precursors or M-^SMZPM-^T, marginal zone B cells orM-^T MZBM-^T, M-^SMTG+CD45+M-^T cells) and on M-^Sp27M-^T cells, corresponding to the fraction of MZP cells that differentiated into CD27-expressing cells after culture on OP9-hDLL1 cells cultured with OP9-hDLL1 cells that differentiated into CD27-expressing cells
Project description:This SuperSeries is composed of the following subset Series: GSE32231: Molecular characterization of Nodal marginal zone lymphoma [Gene Expression] GSE32232: microRNA-expression profile in a series of Nodal marginal zone lymphoma patients [miRNA expression] Refer to individual Series
Project description:Plasma cell differentiation involves coordinated changes in gene expression and functional properties of B cells. Here, we study the role of Mzb1, a Grp94 co-chaperone that is expressed in marginal zone (MZ) B cells and during the terminal differentiation of B cells to antibody-secreting cells (ASCs). By analyzing Mzb1 -/- Prdm1 +/gfp mice, we find that Mzb1 is specifically required for the differentiation and function of ASCs in a T cell-independent immune response. We find that Mzb1-deficiency mimics, in part, the phenotype of Blimp1 deficiency, including the impaired secretion of IgM and the deregulation of Blimp1 target genes. In addition, we find that Mzb1 -/- plasmablasts show a reduced activation of b1 integrin, which contributes to the impaired plasmablast differentiation and migration of ASCs to the bone marrow. Thus, Mzb1 function is required for multiple aspects of plasma cell differentiation.
Project description:To understand the role of LSD1 in splenic B cell development, spleens from mice with B cell conditional deletion of LSD1 were harvested, B220+CD93–GL7–CD23–CD21hiCD1d+ marginal zone B cells and B220+CD93–GL7–CD23+CD21midCD1d– follicular B cells were FACS-sorted, and RNA-seq was performed to identify LSD1-target regulated genes.
Project description:Lymphoplasmacytic lymphomas and marginal zone lymphomas of nodal, extra-nodal and splenic types account for 10% of non-Hodgkin lymphomas. They are similar at the cell differentiation level, sometimes making difficult to distinguish them from other indolent non-Hodgkin lymphomas. To better characterize their genetic basis, we performed array-based comparative genomic hybridization in 101 marginal zone lymphomas (46 MALT, 35 splenic and 20 nodal marginal zone lymphomas) and 13 lymphoplasmacytic lymphomas. Overall, 90.1% exhibited copy-number abnormalities. Lymphoplasmacytic lymphomas demonstrated the most complex karyotype (median=7 copy-number abnormalities), followed by MALT (4), nodal (3.5) and splenic marginal zone lymphomas (3). A comparative analysis exposed a group of copy-number abnormalities shared by several or all the entities with few disease-specific abnormalities. Gain of chromosomes 3, 12 and 18 and loss of 6q23-q24 (TNFAIP3) were identified in all entities. Losses of 13q14.3 (MIRN15A-MIRN16-1) and 17p13.3-p12 (TP53) were found in lymphoplasmacytic and splenic marginal zone lymphomas; loss of 11q21-q22 (ATM) in nodal, splenic marginal zone and lymphoplasmacytic lymphomas; loss of 7q32.1-q33 in MALT, splenic and lymphoplasmacytic lymphomas. Abnormalities affecting the NF-kB pathway were observed in 70% of MALT and lymphoplasmacytic lymphomas and 30% of splenic and nodal marginal zone lymphomas, suggesting distinct roles of this pathway in the pathogenesis/progression of these subtypes. Elucidation of the genetic alterations contributing to the pathogenesis of these lymphomas may guide to design specific therapeutic approaches. One hundred fourteen patients were included in this study: 46 MALT lymphomas (22 pulmonary, 11 salivary glands, 7 lacrimal glands and 6 gastrointestinal), 35 splenic marginal zone lymphomas, 20 nodal marginal zone lymphomas and 13 non-Waldenström’s Macroglobulinemia lymphoplasmacytic lymphomas. All cases were reviewed prior to study on paraffin sections with immunohistochemistry. Sections of each frozen tissue used for study were also reviewed by histological examination and immunohistochemistry before was submitted for the study.