Project description:Next Generation Sequencing in cancer: a feasibility study in France to assess sample circuit and to perform analyzes within a limited time.
Project description:This study utilized next generation sequencing technology (RNA-Seq and BS-Seq) to examine the transcriptome and methylome of various tissues within sorghum plants with the ultimate goal of improving the Sorghum bicolor annotation We examined the mRNA of various Sorghum bicolor (BTx623) tissues (flowers, vegitative and floral meristems, embryos, roots and shoots) and bisulfite treated DNA from two root samples
Project description:Changes in Root Bacterial Communities Associated to Two Different Development Stages of Canola Evaluated through Next-Generation Sequencing Technology
Project description:Next generation sequencing was perfomed to identify differentially expressed micro-RNA in Placental tissue samples from IVF-ET assisted or natural conceived pregnancies
Project description:MicroRNAs (miRNA) are ~21 nucleotide long, small endogenous non-coding RNAs that functioning in regulation of gene expression found in many eukaryotes. In this study, small RNA libraries of opium poppy from four different tissues (leaf, root, capsule, stem) were sequenced using high-throughput next generation Illumina sequencing (Solexa) technology to investigate potential mode of actions of miRNAs in alkaloid biosynthesis. A total of 27 opium poppy miRNAs which have roles in regulation of alkaloid biosynthesis were identified in this study. A six chip study using miRNA isolated from four separate tissues (capsule, leaf, stem, root). small RNA libraries of opium poppy tissues were sequenced using high-throughput next generation Illumina sequencing (Solexa) technology to investigate potential mode of actions of miRNAs in alkaloid biosynthesis. Furthermore, the novel opium poppy miRNAs were also confirmed by a direct small RNA cloning strategy. The microarray platform were performed to measure and analyze the mirnome of the different opium poppy tissues.
Project description:Research conducted using the novel approach of Next Generation Sequencing to determine the differentially expressed microRNAs in whole blood samples from prostate cancer patients.
Project description:Clubroot of Brassicaceae, an economically important soil borne disease, is caused by Plasmodiophora brassicae Woronin, an obligate, biotrophic protist. This disease poses a serious threat to canola and related crops in Canada and around the globe causing significant loss to seed yield. The pathogen is continuously evolving and new pathotypes are emerging, this necessitates the development of novel resistant canola cultivars to manage the disease effectively. Given that proteins play a crucial role in majority of biological processes and molecular functions, the identification of differentially abundant proteins (DAP) using proteomics information is an attractive approach to understand the plant-pathogen interactions as well as in the future development of gene specific markers for developing clubroot resistant (CR) cultivars. In this study, P. brassicae pathotype 3 (P3H) was used to challenge CR and clubroot susceptible (CS) canola lines. Root samples were collected at three distinct stages of pathogenesis, 7-, 14-, and 21-days post inoculation (DPI), protein samples were isolated, digested with trypsin and subjected to LC-MS/MS analysis. A total of 937 proteins demonstrated a significant (q < 0.05) change in abundance in at least in one of the time points when compared between control and inoculated CR-parent, CR-progeny, CS-parent, CS-progeny and 784 proteins were significantly (q < 0.05) changed in abundance in at least in one of the time points when compared between the inoculated- CR and CS root proteomes of parent and progeny across the three time points tested. Functional annotation of the differentially abundant proteins (DAPs) revealed several proteins related to calcium dependent signaling pathways in response to the pathogen. In addition, proteins related to reactive oxygen species (ROS) biochemistry, dehydrins, lignin, thaumatin, and phytohormones were identified. Among the DAPs, 74 putative proteins orthologous to CR proteins and quantitative trait loci (QTL) associated with eight CR loci in four chromosomes including chromosomes A3 and A8 were identified. In conclusion, these results have contributed to an improved understanding of the mechanisms that are involved in mediating response to P. brassicae in canola at the protein level.
Project description:The method to analyze the microsatellite instability (MSI) status by next-generation sequencing (NGS) has been established to assess the deficiency of DNA mismatch repair (MMR) system. The aim of our study is to evaluate the feasibility and reliability of this NGS method by testing the circulating tumor DNA (ctDNA) in blood sample of advanced colorectal cancer patients. If the result is positive, the MSI status could be easily learned without the acquisition of tissue samples.