Project description:Gut microbiome research is rapidly moving towards the functional characterization of the microbiota by means of shotgun meta-omics. Here, we selected a cohort of healthy subjects from an indigenous and monitored Sardinian population to analyze their gut microbiota using both shotgun metagenomics and shotgun metaproteomics. We found a considerable divergence between genetic potential and functional activity of the human healthy gut microbiota, in spite of a quite comparable taxonomic structure revealed by the two approaches. Investigation of inter-individual variability of taxonomic features revealed Bacteroides and Akkermansia as remarkably conserved and variable in abundance within the population, respectively. Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the functional activity with the higher expression rate and the lower inter-individual variability in the study cohort, highlighting the key importance of the biosynthesis of this microbial by-product for the gut homeostasis. The taxon-specific contribution to functional activities and metabolic tasks was also examined, giving insights into the peculiar role of several gut microbiota members in carbohydrate metabolism (including polysaccharide degradation, glycan transport, glycolysis and short-chain fatty acid production). In conclusion, our results provide useful indications regarding the main functions actively exerted by the gut microbiota members of a healthy human cohort, and support metaproteomics as a valuable approach to investigate the functional role of the gut microbiota in health and disease.
Project description:<p>Emerging evidence that the gut microbiota may contribute in important ways to human health and disease has led us and others to hypothesize that both symbiotic and pathological relationships between gut microbes and their host may be key contributors to obesity and the metabolic complications of obesity. Our "Thrifty Microbiome Hypothesis" poses that gut microbiota play a key role in human energy homeostasis. Specifically, constituents of the gut microbial community may introduce a survival advantage to its host in times of nutrient scarcity, promoting positive energy balance by increasing efficiency of nutrient absorption and improving metabolic efficiency and energy storage. However, in the presence of excess nutrients, fat accretion and obesity may result, and in genetically predisposed individuals, increased fat mass may result in preferential abdominal obesity, ectopic fat deposition (liver, muscle), and metabolic complications of obesity (insulin resistance, hypertension, hyperlipidemia). Furthermore, in the presence of excess nutrients, a pathological transition of the gut microbial community may occur, causing leakage of bacterial products into the intestinal lymphatics and portal circulation, thereby inducing an inflammatory state, further aggravating metabolic syndrome traits and accelerating atherosclerosis. This pathological transition and the extent to which antimicrobial leakage occurs and causes inflammatory and other maladaptive sequelae of obesity may also be influenced by host factors, including genetics. In the proposed study, we will directly test the Thrifty Microbiome Hypothesis by performing detailed genomic and functional assessment of gut microbial communities in intensively phenotyped and genotyped human subjects before and after intentional manipulation of the gut microbiome. To address these hypotheses, five specific aims are proposed: (1) enroll three age- and sex-matched groups from the Old Order Amish: (i) 50 obese subjects (BMI > 30 kg/m2) with metabolic syndrome, (ii) 50 obese subjects (BMI > 30 kg/m2) without metabolic syndrome, and (iii) 50 non-obese subjects (BMI < 25 kg/m2) without metabolic syndrome and characterize the architecture of the gut microbiota from the subjects enrolled in this study by high-throughput sequencing of 16S rRNA genes; (2) characterize the gene content (metagenome) to assess the metabolic potential of the gut microbiota in 75 subjects to determine whether particular genes or pathways are correlated with disease phenotype; (3) characterize the transcriptome in 75 subjects to determine whether differences in gene expression in the gut microbiota are correlated with disease phenotype, (4) determine the effect of manipulation of the gut microbiota with antibiotics on energy homeostasis, inflammation markers, and metabolic syndrome traits in 50 obese subjects with metabolic syndrome and (5) study the relationship between gut microbiota and metabolic and cardiovascular disease traits, weight change, and host genomics in 1,000 Amish already characterized for these traits and in whom 500K Affymetrix SNP chips have already been completed. These studies will provide our deepest understanding to date of the role of gut microbes in terms of 'who's there?', 'what are they doing?', and 'how are they influencing host energy homeostasis, obesity and its metabolic complications? PUBLIC HEALTH RELEVANCE: This study aims to unravel the contribution of the bacteria that normally inhabit the human gastrointestinal tract to the development of obesity, and its more severe metabolic consequences including cardiovascular disease, insulin resistance and Type II diabetes. We will take a multidisciplinary approach to study changes in the structure and function of gut microbial communities in three sets of Old Order Amish patients from Lancaster, Pennsylvania: obese patients, obese patients with metabolic syndrome and non-obese individuals. The Old Order Amish are a genetically closed homogeneous Caucasian population of Central European ancestry ideal for genetic studies. These works have the potential to provide new mechanistic insights into the role of gut microflora in obesity and metabolic syndrome, a disease that is responsible for significant morbidity in the adult population, and may ultimately lead to novel approaches for prevention and treatment of this disorder.</p>