Project description:Parthenogenetic embryos derive their genomes entirely from maternal genome, and lack paternal imprint patterns. Many achievements have been made in the study of genomic imprinting using parthenogenetic embryonic stem cells (hPES cells). However, due to the developmental defects and ethical limits, the comprehensive understanding of parthenogenetic embryo development is still lacking. Here, we induced naive hPES cells into parthenogenic blastoids using a published two-step 3D induction protocol. Morphological and molecular analysis showed that parthenogenetic blastoids contain crucial cell lineages similar to natural human blastocysts.
Project description:Parthenogenetic embryonic stem cells (PESCs) may have future utility in cell replacement therapies. We examined genome-wide mRNA expression profiles of monkey PESCs relative to ESCs derived from fertilized embryos. Several known paternally-imprinted genes were in the highly down-regulated group in PESCs compared to ESCs. Allele specific expression analysis of paternally-imprinted genes, i.e., those genes whose expression is down-regulated in PESCs, led to the identification of one novel candidate that was exclusively expressed from a paternal allele. Our findings suggest that PESCs could be used as a model for studying genomic imprinting and in the discovery of novel imprinted genes. Keywords: gene expression The transcriptomes of rhesus monkey embryonic stem cell lines derived from IVF-produced embryos (Oregon Rhesus Macaque Embryonic Stem, ORMES-22) were compared with rhesus monkey parthenogenetic embryonic stem cell lines (heterozygous rhesus Parthenogenetic embryonic stem cell lines, rPESC-2) and homozygous rhesus Parthenogenetic embryonic stem cell lines, ORMES-9). Moreover, the transcriptomes of rPESC-2 line were also compared with ORMES-9. Finally, the adult somatic skin fibroblasts were analyzed. Three biological replicates of each cell line (A, B, C) were analyzed.
Project description:In pluripotential reprogramming, a pluripotent state is established within somatic cells. In this study, we have generated induced pluripotent stem (iPS) cells from bi-maternal (uniparental) parthenogenetic neural stem cells (pNSCs) by transduction with four (Oct4, Klf4, Sox2, and c-Myc) or two (Oct4 and Klf4) transcription factors. The parthenogenetic iPS (piPS) cells directly reprogrammed from pNSCs were able to generate germline-competent himeras, and hierarchical clustering analysis showed that piPS cells were clustered more closer to parthenogenetic ES cells than normal female ES cells. Interestingly, piPS cells showed loss of parthenogenetic-specific imprinting patterns of donor cells. Microarray data also showed that the maternally imprinted genes, which were not expressed in pNSCs, were upregulated in piPS cells, indicating that pluripotential reprogramming lead to induce loss of imprinting as well as re-establishment of various features of pluripotent cells in parthenogenetic somatic cells. 5 samples were analyzed by microarray, each one them in duplicate. fNSC: Mouse female NSC (Neural Stem Cell) pNSC: Mouse parthenogenetic NSC (Neural Stem Cell) piPS-2F: Mouse parthenogenetic induced pluripotent cells derived from NSC overexpressing Oct4 and Klf4 pESC-B: Mouse parthenogenetic ESC (Embryonic Stem Cell) SSEA-1 sorted fESC: Mouse female ESC (Embryonic Stem Cell) OG2
Project description:In this study, mRNA expression profiles were examined by Illumina microarray in mouse embryonic stem cells (ESCs) derived from androgenetic (aESC), parthenogenetic (pESC) and fertilized (fESC) blastocysts. Results showed that 2394, 87 and 1788 mRNAs were differentially expressed in the aESCs vs. fESCs, pESCs vs. fESCs and aESCs vs. pESCs, respectively. Androgenetic, parthenogenetic and fertilized embryonic stem cell lines were established from androgenetic, parthenogenetically activated and fertilized blasotocyst. mRNA microarrays were repeated three times using passages 6, 7 and 8.
Project description:Embryonic stem (ES) cells are used in cell therapy and tissue engineering due to their ability to produce different cells types. However, studies of ES cells that are derived from fertilized embryos have raised concerns about the limitations imposed by ethical and political considerations. Therefore, many studies of ES cells use the ES cells that are derived from unfertilized oocytes and adult tissue. Although parthenogenetic embryonic stem (ESP) cells also avoided ethical and political dilemmas and can be used in cell-based therapy, the ESP cells exhibit growth retardation problems. Therefore, to investigate the potential for muscle growth from genetically modified ESP cells, we established four ES cell types, including normal embryonic stem (ESN) cells, ESP cells, ESP cells that overexpress the Igf2 gene (ESI) and ESP cells with down-regulated H19 gene expression (ESH). Using these cells, we examined the expression profiles of genes that were related to imprinting and muscle using microarrays. Total RNA obtained from isolated genetically modified parthenogenetic mouse embryonic stem cells compared to parthenogenetic mouse embryonic stem cells. 2 Biological Replication.
Project description:In this study, mRNA expression profiles were examined by Illumina microarray in mouse embryonic stem cells (ESCs) derived from androgenetic (aESC), parthenogenetic (pESC) and fertilized (fESC) blastocysts. Results showed that 2394, 87 and 1788 mRNAs were differentially expressed in the aESCs vs. fESCs, pESCs vs. fESCs and aESCs vs. pESCs, respectively.
Project description:Uniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts. Here we hypothesized that nonembryonic parthenogenetic stem cells (PSCs) can be directed toward the cardiac lineage and applied to tissue-engineered heart repair. We first confirmed similar fundamental properties in murine PSCs and embryonic stem cells (ESCs), despite notable differences in genetic (allelic variability) and epigenetic (differential imprinting) characteristics. Haploidentity of major histocompatibility complexes (MHCs) in PSCs is particularly attractive for allogeneic cell-based therapies. Accordingly, we confirmed acceptance of PSCs in MHC-matched allotransplantation. Cardiomyocyte derivation from PSCs and ESCs was equally effective. The use of cardiomyocyte-restricted GFP enabled cell sorting and documentation of advanced structural and functional maturation in vitro and in vivo. This included seamless electrical integration of PSC-derived cardiomyocytes into recipient myocardium. Finally, we enriched cardiomyocytes to facilitate engineering of force-generating myocardium and demonstrated the utility of this technique in enhancing regional myocardial function after myocardial infarction. Collectively, our data demonstrate pluripotency, with unrestricted cardiogenicity in PSCs, and introduce this unique cell type as an attractive source for tissue-engineered heart repair. 8 samples in total. Parthenogenetic stem cells (PSC): - PSC_1 - PSC_2 - PSC_3 Embryoid body (EB) assays of parthenogenetic stem cells: - EB_PSC_1 - EB_PSC_2 Embryonic stem cells (ESC): - ESC_1 - ESC_2 - ESC_3
Project description:We derived two novel rpESC lines and characterized their microRNA signature by Solexa deep sequencing. By characterizing their microRNA signature, we identified 91 novel microRNAs, except those are also detected in other primate ESCs. Moreover, these two novel rpESCs display a unique microRNA signature, comparing to their biparental counterpart ESCs. Examination of 2 different small RNA expression profilings in 2 rhesus parthenogenetic embryonic stem cell lines
Project description:To test the efficacy of stem cell lines to generate 'stem-cell-derived-synthetic blastocysts', we dissociated ES- (built by conventional embryonic stem cells and trophoblast stem cells) or EPS-blastoids (built by extended potential pluripotent stem cells and trophoblast stem cells) into single cells following 96h of culture for single-cell transcriptome analysis.