Project description:Salivary multiprotein complexes from Triatoma infestans, Triatoma dimidiata, Dipetalogaster maxima, Rhodnius prolixus, and Rhodnius neglectus were identified by Blue-Native-PAGE (BN-PAGE) coupled with liquid chromatography tandem mass spectrometry.
2020-03-18 | MSV000085118 | MassIVE
Project description:Hindgut microbiota of Triatoma infestans
Project description:Triatoma infestans are insect triatomines and vectors of the protozoan Trypanosoma cruzi responsible for human Chagas' disease. Considering that T. cruzi multiplies inside the triatomine digestive tract (TDT), the analysis of the TDT protein profile is an essential step to understand TDT physiology during T. cruzi infection. To characterize the protein profile of TDT of T. infestans, a shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was applied in this report.
Project description:To allow estimation of the complexity and gene expression differences of the antennal transcriptome between sexes as well as between castes, microarrays were designed based on an assembly of A. vollenweideri antennal sequence data from all sexes and castes. The microarrays were hybridized with samples generated from the respecitve antennal tissues, with four independent sample pools per sex and caste.
Project description:Phytophthora spp. encode large sets of effector proteins and distinct populations of small RNAs (sRNAs). Reports suggest that pathogen-derived sRNAs can modulate the expression of plant defense genes. The experiments reported here were designed to shed light on impact of sRNAs in the potato-P. infestans interaction. We used the Argonaute or Ago1 from P. infestans tagged with GFP transformed into the 88069 strain to infect potato cv. Bintje plants. Collected leaf materials were used in co-immunoprecipitation experiments together with P. infestans harboring GFP (control GFP) and P. infestans mycelia grown on media (control mycelia). These three materials were sequenced at a Ion Proton platform. The reads length of 8-38 nt were adaptor-trimmed and mapped to the P. infestans genome and the Solanom tuberosum genome v4.04. Both P. infestans-associated and potato derived sRNAs were identified.