Project description:Spermatogonial differentiation is a developmental process that is essential for spermatogenesis, but the molecular and cellular changes that germ cells must undergo to transition from undifferentiated spermatogonia to differentiating spermatogonia remain largely undefined. Retinoic acid (RA) is necessary and sufficient for spermatogonial differentiation. Using the postnatal mouse testis, we examine the transcriptome changes that accompany spermatogonial differentiation. Spermatogenesis was synchronized by administration of potent and selective RA synthesis inhibitor; as a result, testes contained only undifferentiated spermatogonia. Then, the inhibitor was discontinued, and mice were given a single dose of exogenous RA to initiate spermatogonial differentiation. We measured transcriptomes in FACS-enriched germ cells either before RA administration, when the cells correspond to Aal spermatogonia (and a minor contribution of spermatogonial stem cells) or at two points after RA administration, when the cells correspond to A1 or A3 differentiating spermatogonia. The results of this study reveal the full transcriptome changes accompanying spermatogonial differentiation in the mouse.
Project description:Spermatogenesis is an intricate developmental process occurring in testes by which spermatogonial stem cells (SSCs) self-renew and differentiate into mature sperm. The molecular mechanisms for SSC self-renewal and differentiation, while have been well studied in mice, may differ between mice and domestic animals including pigs. To gain knowledge about the molecular mechanisms for porcine SSC self-renewal and differentiation that have to date been poorly understood, here we isolated and enriched primitive spermatogonia from neonatal porcine testes, and exposed the cells to retinoic acid, a direct inducer for spermatogonial differentiation. We then identified that retinoic acid could induce porcine primitive spermatogonial differentiation into leptotene spermatocyte-like cells, which was accompanied by a clear transcriptomic alteration, as revealed by the RNA-sequencing analysis. We also compared retinoic acid-induced in vitro porcine spermatogonial differentiation with the in vivo process, and compared retinoic acid-induced in vitro spermatogonial differentiation between pigs and mice. Furthermore, we analyzed retinoic acid-induced differentially expressed long non-coding RNAs (lncRNAs), and demonstrated that a pig-specific lncRNA, lncRNA-106504875, positively regulated porcine spermatogonial proliferation by targeting the core transcription factor ZBTB16. Taken together, these results would help to elucidate the roles of retinoic acid in porcine spermatogonial differentiation, thereby contributing to further knowledge about the molecular mechanisms underlying porcine SSC development and, in the long run, to optimization of both long-term culture and induced differentiation systems for porcine SSCs.
Project description:Retinoic acid (RA) induces spermatogonial differentiation, but the mechanism by which it operates remains largely unknown. We developed a germ cell culture assay system to study genes involved in spermatogonial differentiation triggered by RA. Stimulated by Retinoic Acid 8 (Stra8), an RA-inducible gene, is indispensable for meiosis initiation, and its deletion results in a complete block of spermatogenesis at the pre-leptotene/zygotene stage due to failure to complete pre-meiotic DNA replication. To interrogate the role of Stra8 in RA mediated differentiation of spermatogonia, we derived germ cell cultures from the neonatal testis of both wild type and Stra8 knock-out mice. We provide the first evidence that Stra8 plays a crucial role in modulating the responsiveness of undifferentiated spermatogonia to RA and facilitates transition to a differentiated state. Stra8-mediated differentiation is achieved through downregulation of a large portfolio of genes and pathways, most notably including genes involved in the spermatogonial stem cell self-renewal process. We also report here for the first time the role of Transcription Elongation Regulator-1 Like (Tcerg1l) as a downstream effector of RA-induced spermatogonial differentiation.
Project description:A bioenergetic balance between glycolysis and mitochondrial respiration is particularly important for stem cell fate specification. It however remains to be determined whether undifferentiated spermatogonia switch their preference of bioenergy production during differentiation. In this study, we found that ATP generation in spermatogonia was gradually increased upon retinoic acid-induced differentiation. To accommodate this elevated energy demand, retinoic acid signaling concomitantly switched ATP production in spermatogonia from glycolysis to mitochondrial respiration, accompanied by increased levels of reactive oxygen species. In addition, inhibition of glucose conversion to glucose-6-phosphate or pentose phosphate pathway blocked the formation of c-Kit+ differentiating germ cells, suggesting that metabolites produced from glycolysis are required for spermatogonial differentiation. We further demonstrated that the expression levels of several metabolic regulators and enzymes were significantly altered upon retinoic acid-induced differentiation by both RNA-seq analyses and quantitative proteomics. Taken together, our data unveil a critically regulated bioenergetic balance between glycolysis and mitochondrial respiration which is required for spermatogonial proliferation and differentiation.
Project description:Retinoic acid triggers differentiation of spermatogonial stem cells by activating the expression of differentiating genes. Long noncoding RNAs (lncRNA) are transcripts longer than 200 nucleotides that do not code for proteins, providing a new perspective of RNA species in gene regulation. However, the function of lncRNAs in determining SSC differentiation has not been investigated. Here, we used high-throughput sequencing to profile all lncRNAs in SSCs, and report the dataset of lncRNAs during SSC differentiation.
Project description:Among its many roles in development, retinoic acid determines the anterior-posterior identity of differentiating motor neurons by activating Retinoic Acid Receptor (RAR)-mediated transcription. RAR is thought to bind the genome constitutively, and only induce transcription in the presence of the retinoid ligand. However, little is known about where RAR binds to the genome or how it selects target sites. We tested the constitutive RAR binding model using the retinoic acid-driven differentiation of mouse embryonic stem cells into differentiated motor neurons. We find that retinoic acid treatment results in widespread changes in RAR genomic binding, including novel binding to genes directly responsible for anterior-posterior specification, as well as the subsequent recruitment of the basal polymerase machinery. Finally, we discovered that the binding of transcription factors at the embryonic stem cell stage can accurately predict where in the genome RAR binds after initial differentiation. We have characterized a ligand-dependent shift in RAR genomic occupancy at the initiation of neurogenesis. Our data also suggests that enhancers active in pluripotent embryonic stem cells may be preselecting regions that will be activated by RAR during neuronal differentiation. The differentiation of ventral motor neurons is induced by treating embryonic stem cell cultures with retinoic acid. Here, ChIP-seq is used to profile the genome-wide occupancy of RAR isofroms both immediately prior to and during exposure of the cells to retinoic acid. ChIP-seq is also used to profile the genomic occupancy of Pol2 with phosphorylated serine 5 (Pol2-S5P) and phosphorylated serine 2 (Pol2-S2P) after exposure to retinoic acid.
Project description:Mouse spermatogonial stem cells (SSCs) continuously self-renew on the feeder layers in serum-free culture medium supplemented with glial cell line-derived neurotrophic factor and fibroblast growth factor 2. To identify novel nuclear proteins involved in SSC maintenance, comparative proteomic profiling of nuclear proteins was performed between self-renewing and differentiation-initiated SSCs in culture. The self-renewing SSC cultures were established from C57BL/6 mouse testes. Nuclear fractions from self-renewing SSC cultures treated with ethanol as a vehicle control (spermatogonial stem cells) and differentiation-initiated SSC cultures treated with 0.3 μM retinoic acid for 24 h (spermatogonial progenitor cells) were isolated for proteomic analysis.
Project description:Among its many roles in development, retinoic acid determines the anterior-posterior identity of differentiating motor neurons by activating Retinoic Acid Receptor (RAR)-mediated transcription. RAR is thought to bind the genome constitutively, and only induce transcription in the presence of the retinoid ligand. However, little is known about where RAR binds to the genome or how it selects target sites. We tested the constitutive RAR binding model using the retinoic acid-driven differentiation of mouse embryonic stem cells into differentiated motor neurons. We find that retinoic acid treatment results in widespread changes in RAR genomic binding, including novel binding to genes directly responsible for anterior-posterior specification, as well as the subsequent recruitment of the basal polymerase machinery. Finally, we discovered that the binding of transcription factors at the embryonic stem cell stage can accurately predict where in the genome RAR binds after initial differentiation. We have characterized a ligand-dependent shift in RAR genomic occupancy at the initiation of neurogenesis. Our data also suggests that enhancers active in pluripotent embryonic stem cells may be preselecting regions that will be activated by RAR during neuronal differentiation.