Project description:cDNA microarray analysis to identify genes regulated by the RNA chaperone, Hfq. Four experiments were performed: 1/ Hfq+ vs Hfq- strains. 269 significantly differentially regulated genes were identified by SAM (Statistical Analysis of Microarrays), of which 120 changed more than 1.5 fold (48 increased and 72 decreased in hfq-). Amongst other genes, these experiments identified significant regulation of the sigma E and sigma 32 regulons. However, only genes induced by sigma E were similarly induced in hfq-; 8 operons repressed by sigma E were not repressed in hfq-. 2/ wt vs delta rseA. RseA is the antisigma factor for sigmaE. This comparison results in elevated steady-state levels of sigma E, and confirmed induction and repression of target regulon members. 3/ hfq+ vs hfq+ rpoE overexpression. RpoE encoding sigma E was overexpressed in an hfq+ background, confirming normal regulation of the sigma E regulon. 4/ hfq+ vs hfq- rpoE overexpression. Sigma E was overexpressed in an hfq- background. This demonstrated that 8 operons normally repressed by sigma E require hfq for this repression. The simple conclusion is that sigma E regulates small RNAs that, together with Hfq, bind target mRNAs and results in their rapid degradation. This study is detailed in Guisbert et al 2007 (J Bacteriol, 189:1963-73) Keywords: Genetic modification
Project description:Pseudomonas chlororaphis strain 30-84 is an effective biological control agent against take-all disease of wheat. In this study, we conducted an RNA-seq analysis by comparing the wild type strain with a Hfe deficient mutant. RNA-seq analysis identified over 900 genes differentially regulated by Hfq.
Project description:Pseudomonas chlororaphis strain 30-84 is an effective biological control agent against take-all disease of wheat. In this study, we conducted an RNA-seq analysis by comparing the wild type strain with a Hfe deficient mutant. RNA-seq analysis identified over 900 genes differentially regulated by Hfq. A total of 4 samples were analyzed in AB medium + 2% casamino acids, Pseudomonas chlororaphis wild type strain (2 replicates); Pseudomonas chlororaphis ZN mutant (2 replicates).
Project description:The small RNAs associated with protein Hfq constitute one of the largest classes of post-transcriptional regulators known to date. Most previously investigated members of this class are encoded by conserved free-standing genes. Here, deep sequencing of Hfq-bound transcripts from multiple stages of growth of Salmonella Typhimurium revealed a plethora of new small RNA species from within mRNA loci, including DapZ which overlaps with the 3’ region of the biosynthetic gene, dapB. Synthesis of the DapZ small RNA is independent of DapB protein synthesis, and controlled by HilD, the master regulator of Salmonella invasion genes. DapZ carries a short G/U-rich domain similar to that of the globally acting GcvB small RNA, and uses GcvB-like seed pairing to repress translation of the major ABC transporters, DppA and OppA. This exemplifies double functional output from an mRNA locus by the production of both a protein and an Hfq-dependent trans-acting RNA. Our atlas of Hfq targets suggests that the 3’ regions of mRNA genes constitute a rich reservoir to feed the Hfq network with new regulatory small RNAs.
Project description:In Neisseria meningitidis iron responsive gene regulation is mediated primarily by the Ferric Uptake Regulator (Fur) protein. When complexed with iron, Fur represses gene expression by preventing transcription initiation. Fur can also indirectly activate gene expression via the repression of regulatory small RNAs (sRNA). One such Fur-and iron-regulated sRNA, NrrF, was previously identified in N. meningitidis and shown to repress expression of the sdhA and sdhC genes encoding subunits of the succinate dehydrogenase complex. In the majority of Gram-negative bacteria sRNA-mediated regulation requires a cofactor RNA-binding protein (Hfq) for proper gene regulation and stabilization. In this study we examined the role of Hfq in NrrF-mediated regulation of the succinate dehydrogenase genes in N. meningitidis and the effect of an hfq- mutation on iron-responsive gene regulation more broadly. We first demonstrated that the stability of Nrrf as well as the regulation of sdhC and sdhA in vivo was unaltered in the hfq- mutant. Secondly, we established that iron responsive gene regulation of the Fur-regulated sodB gene was dependent on Hfq. Finally, we demonstrate that in N. meningitidis Hfq functions to control expression of both ORFs and intergenic regions via iron independent mechanisms. Collectively these studies demonstrate that in N. meningitidis iron and NrrF mediated regulation of sdhC and sdhA can occur independently of Hfq, although Hfq functions more globally to control regulation of other N. meningitidis genes primarily by iron-independent mechanisms.
Project description:The small RNAs associated with protein Hfq constitute one of the largest classes of post-transcriptional regulators known to date. Most previously investigated members of this class are encoded by conserved free-standing genes. Here, deep sequencing of Hfq-bound transcripts from multiple stages of growth of Salmonella Typhimurium revealed a plethora of new small RNA species from within mRNA loci, including DapZ which overlaps with the 3’ region of the biosynthetic gene, dapB. Synthesis of the DapZ small RNA is independent of DapB protein synthesis, and controlled by HilD, the master regulator of Salmonella invasion genes. DapZ carries a short G/U-rich domain similar to that of the globally acting GcvB small RNA, and uses GcvB-like seed pairing to repress translation of the major ABC transporters, DppA and OppA. This exemplifies double functional output from an mRNA locus by the production of both a protein and an Hfq-dependent trans-acting RNA. Our atlas of Hfq targets suggests that the 3’ regions of mRNA genes constitute a rich reservoir to feed the Hfq network with new regulatory small RNAs. Hfq-associated RNAs were systemically analyzed in Salmonella at 7 different growth stages in standard labortory condition (LB)