Project description:The evolution of gonochorism from hermaphroditism is linked with the formation of sex chromosomes, as well as the evolution of sex-biased and sex-specific gene expression to allow both sexes to reach their fitness optimum. There is evidence that sexual selection drives the evolution of male-biased gene expression in particular. However, previous research in this area in animals comes from either theoretical models or comparative studies of already old sex chromosomes. We therefore investigated changes in gene expression under three different selection regimes for the simultaneous hermaphrodite Macrostomum lignano subjected to sex-limited experimental evolution (i.e., selection for fitness via eggs, via sperm, or a control regime allowing both). After 21 and 22 generations of selection for male-specific or female-specific fitness, we characterized changes in whole-organism gene expression. We found that female-selected lines had changed the most in their gene expression. Although annotation for this species is limited, GO-term and KEGG pathway analysis suggests that metabolic changes (e.g., biosynthesis of amino acids and carbon metabolism) are an important adaptive component. As predicted, we found that expression of genes previously identified as testis-biased candidates tended to be downregulated in the female-selected lines. We did not find any significant expression differences for previously identified candidates of other sex-specific organs, but this may simply reflect that few transcripts have been characterized in this way. In conclusion, our experiment suggests that changes in testis-biased gene expression are important in the early evolution of sex chromosomes and gonochorism.
Project description:Sex chromosomes evolved from autosomes many times across the eukaryote phylogeny. Several models have been proposed to explain this transition, some involving male and female sterility mutations linked in a region of suppressed recombination between X and Y (or Z/W, U/V) chromosomes. Comparative and experimental analysis of a reference genome assembly for a double haploid YY male garden asparagus (Asparagus officinalis L.) individual implicates separate but linked genes as responsible for sex determination. Dioecy has evolved recently within Asparagus and sex chromosomes are cytogenetically identical with the Y, harboring a megabase segment that is missing from the X. We show that deletion of this entire region results in a male-to-female conversion, whereas loss of a single suppressor of female development drives male-to-hermaphrodite conversion. A single copy anther-specific gene with a male sterile Arabidopsis knockout phenotype is also in the Y-specific region, supporting a two-gene model for sex chromosome evolution. Additionally, we test for the presence of Y-specific small RNA loci in several XX, XY, and YY genotypes that may be acting as sex determination loci.
2020-05-02 | GSE149730 | GEO
Project description:Heterogeneous evolution of sex chromosomes in torrent frog genus Amolops
| PRJNA870957 | ENA
Project description:Evolution of sex chromosomes and dosage compensation in monitor lizards
Project description:Sexual dimorphism can evolve through sex-specific regulation of the same gene set. However, sex chromosomes can also facilitate this by directly linking gene expression to sex. Moreover, heteromorphic sex chromosomes often exhibit different gene content, which contributes to sexual dimorphism. Understanding patterns of sex-biased gene expression across organisms is important for gaining insight about the evolution of sexual dimorphism and sex chromosomes. Moreover, studying gene expression in species with recently established sex chromosomes can help understand the evolutionary dynamics of gene loss and dosage compensation. The threespine stickleback is known for its strong sexual dimorphism, especially during the reproductive period. Sex is determined by a young XY sex chromosome pair with three non-recombining regions that have started to degenerate. Using the high multiplexing capability of 3′ QuantSeq to sequence the sex-biased transcriptome of liver, gills and brain, we provide the first characterization of sex-specific transcriptomes from ~80 stickleback (40 males and 40 females) collected from a natural population during the reproductive period. We find that the liver is extremely differentiated (36% of autosomal genes) and reflects ongoing reproduction, while the brain shows very low levels of differentiation (0.78%) with no particular functional enrichment. Finally, the gills exhibit high levels of differentiation (5%), suggesting that sex should be considered in physiological and ecotoxicological studies of gill responses in fishes. We also find that sex-biased gene expression in X-linked genes is mainly driven by a lack of dosage compensation. However, sex-biased expression of genes that have conserved copies on both sex chromosomes is likely driven by the degeneration of Y allele expression and a down-regulation of male-beneficial mutations on the X chromosome.
Project description:Silene latifolia is a dioecious plant with heteromorphic sex chromosomes that have originated only ~10 MYA and is a promising model organism to study sex chromosome evolution in plants. Previous work suggests that S. latifolia XY chromosomes have gradually stopped recombining and the Y chromosome is undergoing degeneration as in animal sex chromosomes. However, this work has been limited by the paucity of sex-linked genes available. Here, we used 35 Gb of RNA-seq data from multiple males (XY) and females (XX) of a S. latifolia inbred line to detect sex-linked SNPs and identified more than 1700 sex-linked contigs (with X-linked and Y-linked alleles). Analyses using known sex-linked and autosomal genes, together with simulations indicate that these newly identified sex-linked contigs are reliable. Using read numbers, we then estimated expression levels of X-linked and Y-linked alleles in males and found an overall trend of reduced expression of Y-linked alleles, consistent with a widespread ongoing degeneration of the S. latifolia Y chromosome. By comparing expression intensities of X-linked alleles in males and females, we found that X-linked allele expression increases as Y-linked allele expression decreases in males, which makes expression of sex-linked contigs similar in both sexes. This phenomenon is known as dosage compensation and has so far only been observed in evolutionary old animal sex chromosome systems. Our results suggest that dosage compensation has evolved in plants and that it can quickly evolve de novo after the origin of sex chromosomes.
Project description:Background Sex chromosomes are subject to evolutionary pressures distinct from the remainder of the genome, shaping their structure and sequence content. We are interested in the sex chromosomes of domestic pigs (Sus scrofa), how their structure and gene content compares and contrasts with other mammalian species, and the role of gonosomal genes in fertility. This requires an understanding of the XY-homologous sequence on these chromosomes. To this end, we performed microarray-based comparative genomic hybridisation (array-CGH) with male and female Duroc genomic DNA on a pig X-chromosome BAC tiling-path microarray. Putative XY-homologous BACs from regions of interest were subsequently FISH mapped. Results We show that the porcine PAR is approximately 6.5-6.9Mb at the beginning of the short arm of the X, with gene content reflective of the artiodactyl common ancestor. Our array-CGH data also shows an XY-homologous region close to the end of the X long arm, spanning three X BACs. These BACs were FISH mapped, and paint the entire long arm of SSCY. Further clones of interest revealed X-autosomal homology or regions containing repetitive content. Conclusions This study has identified regions of XY homology in the pig genome, and defined the boundary of the PAR on the X chromosome. This adds to our understanding of the evolution of the sex chromosomes in different mammalian lineages, and will prove valuable for future comparative genomic work in suids and for the construction and annotation of the genome sequence for the sex chromosomes. Our finding that the SSCYq repetitive content has corresponding sequence on the X chromosome gives further insight into structure of SSCY, and suggests further functionally important sequences remain to be discovered on the X and Y.