Project description:Maize is one of the most important crops in the world and serves as an excellent model for seed development research. Despite the important role of the transcriptome in development, genome-wide expression throughout the process of maize seed development has not been characterized. Using RNA-seq, we developed a spatio-temporal transcriptome atlas of B73 maize seed development from fertilization to maturity for embryo, endosperm, and whole seed tissue.
Project description:Maize (Zea mays) is an excellent cereal model for research on seed development because of its relatively large size for both embryo and endosperm. Despite the importance of seed in agriculture, the genome-wide transcriptome pattern throughout seed development has not been well characterized. Using high-throughput RNA sequencing, we developed a spatiotemporal transcriptome atlas of B73 maize seed development based on 53 samples from fertilization to maturity for embryo, endosperm, and whole seed tissues.
Project description:P1 is the major QTL for maysin and chlorogenic acid accumulation in silk. Both compounds were important for plant defenses. Silk is an important reproductive organ that is critical for good seed setting in corn ear and needs to be protected against various stresses, therefore, metabolics compounds (ex: phenolics) were highly enriched in silk. Here we characterize transcriptome changes in maize protoplast, and natural variants of P1 silks, and pericards to characterize the regulatory landscape. Also we evaluated profiles of silk in B73 x A632 hybrids in order to cis and trans specific effect driven by P1 in maize. Our study identifies new P1 targets in the silk and protoplast. Together with the RNA-seq data (P1-rr vs P1-ww in silk and pericarp and protoplast 35S:P1 vs empty vector control), we observed new P1 functions in silk that were not observed in pericarp. Also, Protoplast and silk ChIP-seq in F1 silk, as well as DAP-seq analysis of P1 - shows specific P1 targets with highlight cis and trans effect on the F1 hybrids.
Project description:Using high-throughput RNA sequencing, we developed a spatiotemporal transcriptome atlas for seed development of eight maize inbred lines based on 144 samples from the middle to late stages of grain development. A total of 26,747 genes with FPKM value more than 1 at least one sample were found to be involved in programming grain development. Global comparisons of genes expression highlighted the fundamental transcriptomic reprogramming and the phases of development. Coexpression analysis provided further insight into the dynamic reprogramming of the transcriptome by revealing functional transitions during maturation. Combined with grain moisture content and grain dehydration rate of different developmental time points of eight maize inbred lines, we captured a large number of genes related to grain moisture content and grain dehydration rate, which should help elucidate key mechanisms and regulatory networks that underlie grain dehydration during maize grain development. These results provide a comprehensive understanding of which biological processes are involved in the regulation of moisture variety of maize grain, the general principles of which provide a new perspective on improving maize grain dehydration characteristics. Meanwhile, this study provides a valuable resource for understanding the genetic regulation of maize grain development.
Project description:In this study, we aim to present a global view of transcriptome dynamics during seed development in a large-seeded chickpea (genotype JGK3). We generated about 1.5 billion high-quality reads from 24 libraries (leaf and seven seed developmental stages in three biological replicates) using Illumina high-throughput sequencing platform. We mapped the reads to the kabuli chickpea genome for estimation of their transcript abundance in different tissue samples. The transcriptome dynamics was studied by differential gene expression analyses between different samples/stages.