Project description:Bioelectrochemical systems employing mixed microbial communities as biocatalysts are gaining importance as potential renewable energy, bioremediation, or biosensing devices. While we are beginning to understand how individual microorganism species interact with an electrode as electron donor, not much is known about the interactions between different microbial species in a community. Here, we compare the bioelectrochemical performance of Shewanella oneidensis in a pure-culture and in a co-culture with the homolactic acid fermenter Lactococcus lactis. While S. oneidensis alone can only use lactate as electron donor for current production, the co-culture is able to convert glucose into current with a similar coulombic efficiency of approximately 17%, respectively. With (electro)-chemical analysis and transcription profiling, we found that the BES performance and S. oneidensis physiology were not significantly different whether grown as a pure- or co-culture. These co-culture experiments represent a first step in understanding microbial interactions in BES communities with the goal to design complex microbial communities, which specifically convert target substrates into electricity. Further, for the first time, we elucidated S. oneidensis gene expression with an electrode as the only electron acceptor. The expression pattern confirms many previous studies regarding the enzymatic requirements for electrode respiration, and it generates new hypotheses on the functions of proteins, which are so far not known to be involved in electrode respiration. The BES was either operated with S. oneidensis alone, fed with lactate, or it was operated with S. oneidensis and L. lactis with glucose as primary substrate. The basic medium was a modified M4 medium containing 0.5 g/L yeast extract, 0.5 g/L trypton and 5 g/L glycerol phosphate, besides the commen M4 incredients. S. oneidensis oxidizes lactate to acetate and electrons in a BES - the latter generate a current at a graphite anode. The anode biofilm was harvested after about 4 weeks of continuous BES operation and subjected to total RNA extraction.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3)
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals.
Project description:Microtoming Coupled with Microarray Analysis to Evaluate Potential Differences in the Metabolic Status of Geobacter sulfurreducens at Different Depths in Anode Biofilms Differences in the Metabolic Status of Geobacter sulfurreducens at Different Depths in A Current Producing Biofilm Further insight into the metabolic status of cells within anode biofilms is essential for understanding the functioning of microbial fuel cells and developing strategies to optimize their power output. In order to further compare the metabolic status of cells growing close to the anode versus cells in the outer portion of the anode biofilm, mature anode biofilms were treated to stop turnover over of mRNA and then encased in resin which was sectioned into 100 nm shavings with a diamond knife and pooled into inner (0-20 µm from anode surface) and outer (30-60 µm) fractions. Whole genome DNA microarray analysis of RNA extracted from the shavings revealed that, at a 2-fold lower threshold, there were 146 genes that had significant (p<0.05), differences in transcript abundance between the inner and outer portions of the biofilm. Only 1 gene, GSU0093, a hypothetical ABC transporter, had significantly higher transcript abundances in the outer biofilm. Genes with lower transcript abundance in the outer biofilm included genes for ribosomal proteins and NADH dehydrogenase, suggesting that cells in the outer biofilm had lower metabolic rates. However, the differences in transcript abundance were relatively low (<3-fold) and the outer biofilm did not have significantly lower expression of the genes for TCA cycle enzymes which previous studies have demonstrated are sensitive indicators of changes in rates of metabolism in G. sulfurreducens. There also was no significant difference in the transcript levels for outer-surface cell components thought to be important in electron transfer in anode biofilms. Lower expression of genes involved in stress responses in the outer biofilm may reflect the development of low pH near the surface of the anode. The results of the metabolic staining and gene expression studies suggest that cells throughout the biofilm are metabolically active and can potentially contribute to current production. The microtoming/microarray strategy described here may be useful for evaluating gene expression with depth in a diversity of microbial biofilms.
Project description:Microtoming Coupled with Microarray Analysis to Evaluate Potential Differences in the Metabolic Status of Geobacter sulfurreducens at Different Depths in Anode Biofilms Differences in the Metabolic Status of Geobacter sulfurreducens at Different Depths in A Current Producing Biofilm Further insight into the metabolic status of cells within anode biofilms is essential for understanding the functioning of microbial fuel cells and developing strategies to optimize their power output. In order to further compare the metabolic status of cells growing close to the anode versus cells in the outer portion of the anode biofilm, mature anode biofilms were treated to stop turnover over of mRNA and then encased in resin which was sectioned into 100 nm shavings with a diamond knife and pooled into inner (0-20 µm from anode surface) and outer (30-60 µm) fractions. Whole genome DNA microarray analysis of RNA extracted from the shavings revealed that, at a 2-fold lower threshold, there were 146 genes that had significant (p<0.05), differences in transcript abundance between the inner and outer portions of the biofilm. Only 1 gene, GSU0093, a hypothetical ABC transporter, had significantly higher transcript abundances in the outer biofilm. Genes with lower transcript abundance in the outer biofilm included genes for ribosomal proteins and NADH dehydrogenase, suggesting that cells in the outer biofilm had lower metabolic rates. However, the differences in transcript abundance were relatively low (<3-fold) and the outer biofilm did not have significantly lower expression of the genes for TCA cycle enzymes which previous studies have demonstrated are sensitive indicators of changes in rates of metabolism in G. sulfurreducens. There also was no significant difference in the transcript levels for outer-surface cell components thought to be important in electron transfer in anode biofilms. Lower expression of genes involved in stress responses in the outer biofilm may reflect the development of low pH near the surface of the anode. The results of the metabolic staining and gene expression studies suggest that cells throughout the biofilm are metabolically active and can potentially contribute to current production. The microtoming/microarray strategy described here may be useful for evaluating gene expression with depth in a diversity of microbial biofilms. Three biological replicates were hybridized in triplicate on a coustom affimetrix tilling array using prokaryotic protocol (p69Affy, p75 Adobe) for labeling, hybridization and scanning.
Project description:Understanding and quantifying the effects of environmental factors influencing the variation of abundance and diversity of microbial communities was a key theme of ecology. For microbial communities, there were two factors proposed in explaining the variation in current theory, which were contemporary environmental heterogeneity and historical events. Here, we report a study to profile soil microbial structure, which infers functional roles of microbial communities, along the latitudinal gradient from the north to the south in China mainland, aiming to explore potential microbial responses to external condition, especially for global climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 5.0, we showed that microbial communities were distinct for most but not all of the sites. Using substantial statistical analyses, exploring the dominant factor in influencing the soil microbial communities along the latitudinal gradient. Substantial variations were apparent in nutrient cycling genes, but they were in line with the functional roles of these genes. 300 samples were collected from 30 sites along the latitudinal gradient, with 10 replicates in every site
Project description:To effectively monitor microbial populations in acidic environments and bioleaching systems, a comprehensive 50-mer-based oligonucleotide microarray was developed based on most of the known genes associated with the acidophiles. This array contained 1,072 probes in which there were 571 related to 16S rRNA and 501 related to functional genes. Acid mine drainage (AMD) presents numerous problems to the aquatic life and surrounding ecosystems. However, little is known about the geographic distribution, diversity, composition, structure and function of AMD microbial communities. In this study, we analyzed the geographic distribution of AMD microbial communities from twenty sites using restriction fragment length polymorphism (RFLP) analysis of 16S rRNA genes, and the results showed that AMD microbial communities were geographically distributed and had high variations among different sites. Then an AMD-specific microarray was used to further analyze nine AMD microbial communities, and showed that those nine AMD microbial communities had high variations measured by the number of detected genes, overlapping genes between samples, unique genes, and diversity indices. Statistical analyses indicated that the concentrations of Fe, S, Ca, Mg, Zn, Cu and pH had strong impacts on both phylogenetic and functional diversity, composition, and structure of AMD microbial communities. This study provides insights into our understanding of the geographic distribution, diversity, composition, structure and functional potential of AMD microbial communities and key environmental factors shaping them. This study investigated the geographic distribution of Acid Mine Drainages microbial communities using a 16S rRNA gene-based RFLP method and the diversity, composition and structure of AMD microbial communities phylogenetically and functionally using an AMD-specific microarray which contained 1,072 probes ( 571 related to 16S rRNA and 501 related to functional genes). The functional genes in the microarray were involved in carbon metabolism (158), nitrogen metabolism (72), sulfur metabolism (39), iron metabolism (68), DNA replication and repair (97), metal-resistance (27), membrane-relate gene (16), transposon (13) and IST sequence (11).
Project description:Due to its high altitude and extreme climate conditions, the Tibetan plateau is a region vulnerable to the impact of climate changes and anthropogenic perturbation, thus understanding how its microbial communities function may be of high importance. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, aiming to explore potential microbial responses to climate changes and anthropogenic perturbation. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities in treatment site were distinct, compared with those in control site, e.g. shrubland vs grassland, grazing site vs ungrazing site, or warmer site vs colder site. Substantial variations were apparent in stress, N and C cycling genes, but they were in line with the functional roles of these genes.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3) Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Microbial community structure was determined using PhyoChio (G3)
Project description:Understanding and quantifying the effects of environmental factors influencing the variation of abundance and diversity of microbial communities was a key theme of ecology. For microbial communities, there were two factors proposed in explaining the variation in current theory, which were contemporary environmental heterogeneity and historical events. Here, we report a study to profile soil microbial structure, which infers functional roles of microbial communities, along the latitudinal gradient from the north to the south in China mainland, aiming to explore potential microbial responses to external condition, especially for global climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 5.0, we showed that microbial communities were distinct for most but not all of the sites. Using substantial statistical analyses, exploring the dominant factor in influencing the soil microbial communities along the latitudinal gradient. Substantial variations were apparent in nutrient cycling genes, but they were in line with the functional roles of these genes.