Project description:Purpose: Pre-ribosomal RNA is cleaved at defined sites to release the mature ribosomal RNAs, but the functions of many ribosome biogenesis factors involved in 18S rRNA release are not known. We apply an in vivo cross-linking technique coupled with deep sequencing (CRAC) that captures transcriptome-wide interactions between the yeast PIN domain protein Utp23 and its targets in a living cell. Methods: We apply CRAC to an HTP-tagged Utp23 protein (HTP: His6 - TEV cleavage site - two copies of the z-domain of Protein A) in budding yeast. At least two independent experiments were performed and analysed separately. A non-tagged yeast strain was also used as a negative control. Results: We found that yeast Utp23 UV-crosslinked in vivo to the snR30 snoRNA and to the eukaryotic-specific expansion segment 6 (ES6) in the 18S rRNA. Conclusion: According to our crosslinking data, Utp23 is perfectly positioned to coordinate release of the snR30 snoRNA from the 18S ES6 region.
Project description:MYC is an oncoprotein transcription factor that is overexpressed in the majority cancers. Although MYC itself is considered undruggable, it may be possible to inhibit MYC by targeting the co-factors it uses to drive oncogenic gene expression patterns. Here, we use loss- and gain- of function approaches to interrogate how one MYC co-factor—Host Cell Factor (HCF)-1—contributes to MYC activity in a Burkitt lymphoma setting. We identify high-confidence direct targets of the MYC–HCF-1 interaction that are regulated through a recruitment-independent mechanism, including genes that control mitochondrial function and rate-limiting steps for ribosome biogenesis and translation. We describe how these gene expression events impact cell growth and metabolism, and demonstrate that the MYC–HCF-1 interaction is essential for tumor maintenance in vivo. This work highlights the MYC–HCF-1 interaction as a focal point for development of novel anti-cancer therapies.
Project description:Bud22 binds to the 5´domain of 18S rRNA and U14 snoRNA Grant Number: BA 2316/2-1 German Research Foundation (DFG) Grantee: Jochen,,Baßler
Project description:Eukaryotic ribosome biogenesis begins with the co-transcriptional assembly of the 90S pre-ribosome. The ‘U three protein’ (UTP) complexes and snoRNA particles arrange around the nascent pre-ribosomal RNA chaperoning its folding and further maturation. The earliest event in this hierarchical process is the binding of the UTP-A complex to the 5’-end of the pre-ribosomal RNA (5’-ETS). This oligomeric complex predominantly consists of β-propeller and α-solenoidal proteins. Here we present the structure of the Utp4 subunit from the thermophilic fungus Chaetomium thermophilum at 2.15 Å resolution and analyze its function by UV RNA-crosslinking (CRAC) and in context of a recent cryo-EM structure of the 90S pre-ribosome. Utp4 consists of two orthogonal and highly basic β-propellers that perfectly fit the EM-data. The Utp4 structure highlights an unusual Velcro-closure of its C-terminal β-propeller as relevant for protein integrity and Utp8 recognition in the context of the pre-ribosome. We provide a first model of the 5’-ETS RNA from an internally hidden 5’-end up to the region that hybridizes to the 3’-hinge sequence of U3 snoRNA and validate a specific Utp4/5’-ETS interaction by CRAC analysis. Altogether Utp4 is central to the UTP-A complex and organizes the 5’-ETS for further maturation.
Project description:The budding yeast E3 SUMO ligase Mms21, a component of the Smc5-6 complex, regulates sister chromatid cohesion, DNA replication, and DNA repair. We identify a role for Mms21 in ribosome biogenesis. The mms21RINGD mutant exhibits reduced rRNA production, nuclear accumulation of 60S and 40S ribosomal proteins, and elevated Gcn4 translation. Genes involved in ribosome biogenesis and translation are down-regulated in the mms21RINGD mutant. Examining gene expression profile of mms21RINGD mutant compared to wild-type by RNA Seq using Ilumina sequencing
Project description:27 years after the yeast genome sequencing, the function of many ORFs remain unknown. Despite the evolutionary distance between human and yeast, homology with the conserved DEAD-box helicase domains allowed us to list DHX29, DHX36 and DHX57 as three putative homologs of the yeast Ylr419w. Functional studies first linked the Ylr419w protein to the translating ribosome, and cross-linking and analysis of cDNA (CRAC) experiments determined the precise region of Ylr419w in contact with the ribosome. It corresponds to the loop of the h16 helix in the 18S rRNA designing the translation initiation factor DHX29, as the functional homolog of Ylr419w.
Project description:The role of ribosome biogenesis in erythroid development is supported by the recognition of erythroid defects in ribosomopathies in both Diamond-Blackfan anemia and 5q- syndrome. Whether ribosome biogenesis exerts a regulatory function on normal erythroid development is still unknown. In the present study, a detailed characterization of ribosome biogenesis dynamics during human and murine erythropoiesis shows that ribosome biogenesis is abruptly interrupted by the drop of rDNA transcription and the collapse of ribosomal protein neo-synthesis. Its premature arrest by RNA polI inhibitor, CX-5461 targets the proliferation of immature erythroblasts. We also show that p53 is activated spontaneously or in response to CX-5461 concomitantly to ribosome biogenesis arrest, and drives a transcriptional program in which genes involved in cell cycle arrest, negative regulation of apoptosis and DNA damage response were upregulated. RNA polI transcriptional stress results in nucleolar disruption and activation of ATR-CHK1-p53 pathway. Our results imply that the timing of ribosome biogenesis extinction and p53 activation are crucial for erythroid development. In ribosomopathies in which ribosome availability is altered by unbalanced production of ribosomal proteins, the threshold of ribosome biogenesis down-regulation could be prematurely reached and together with pathological p53 activation prevents a normal expansion of erythroid progenitors.
Project description:In all domains of life, the rate of protein synthesis is directly linked to the rates of cell growth and proliferation. Consequently, highly proliferative cancer cells are especially sensitive to perturbations in ribosome biogenesis. While ribosome synthesis and cancer have a well-established relationship, only recently has ribosome biogenesis drawn interest as a cancer therapeutic target. Here, we have exploited the relationship between ribosome biogenesis and cancer cell proliferation by using a potent ribosome biogenesis inhibitor: RBI2 (Ribosome Biogenesis Inhibitor 2) to perturb cancer cell growth and viability. We demonstrate that RBI2 significantly decreases cell viability in malignant melanoma cells and breast cancer cell lines. Treatment with RBI2 dramatically and rapidly decreases ribosomal RNA (rRNA) synthesis, without affecting the occupancy of RNA polymerase I (Pol I) on the ribosomal DNA template. Next-generation RNA sequencing (RNA-seq) reveals that RBI2 and previously described ribosome biogenesis inhibitor CX-5461 induce distinct changes in the transcriptome. Investigation of the content of the pre-rRNAs through RT-qPCR reveals an increase in polyadenylation of cellular rRNA after treatment with RBI2, a known pathway by which rRNA degradation occurs. Northern blotting revealed that RBI2 does not appear to impair or alter rRNA processing. Collectively, these data suggest that RBI2 inhibits rRNA synthesis distinctly from other previously described ribosome biogenesis inhibitors, potentially through a novel pathway that upregulates turnover of premature rRNAs.
Project description:The role of ribosome biogenesis in erythroid development is supported by the recognition of erythroid defects in ribosomopathies in both Diamond-Blackfan anemia and 5q- syndrome. Whether ribosome biogenesis exerts a regulatory function on normal erythroid development is still unknown. In the present study, a detailed characterization of ribosome biogenesis dynamics during human and murine erythropoiesis shows that ribosome biogenesis is abruptly interrupted by the drop of rDNA transcription and the collapse of ribosomal protein neo-synthesis. Its premature arrest by RNA polI inhibitor, CX-5461 targets the proliferation of immature erythroblasts. We also show that p53 is activated spontaneously or in response to CX-5461 concomitantly to ribosome biogenesis arrest, and drives a transcriptional program in which genes involved in cell cycle arrest, negative regulation of apoptosis and DNA damage response were upregulated. RNA polI transcriptional stress results in nucleolar disruption and activation of ATR-CHK1-p53 pathway. Our results imply that the timing of ribosome biogenesis extinction and p53 activation are crucial for erythroid development. In ribosomopathies in which ribosome availability is altered by unbalanced production of ribosomal proteins, the threshold of ribosome biogenesis down-regulation could be prematurely reached and together with pathological p53 activation prevents a normal expansion of erythroid progenitors.