Project description:Integrated CANDAN-HAP Process for Efficient Nitrogen Removal and Phosphorus Recovery Driven by Calcium-Induced Biomineralization in Low-Strength Wastewater Treatment
| PRJNA1291611 | ENA
Project description:Simultaneous nitrogen and phosphorus removal in oxic/anoxic process
| PRJNA997444 | ENA
Project description:PN-Anammox process for nitrogen removal of food waste anaerobic digestate
| PRJNA861074 | ENA
Project description:Microbial nitrogen and phosphorus removal
Project description:Anaerobic ammonium oxidizing (anammox) bacteria mediate a key step in the biogeochemical nitrogen cycle and have been applied worldwide for the energy-efficient removal of nitrogen from wastewater. However, outside their core energy metabolism, little is known about the metabolic networks driving anammox bacterial anabolism and mixotrophy beyond genome predictions. Here, we experimentally resolved the central carbon metabolism using metabolomics (LC-MS and GC-MS), metabolic flux analysis and proteomics (shot-gun proteomics).
Project description:Phosphorus is a critical nutrient controlling phytoplankton growth. Availability of this limiting factor can vary significantly in space and time, particularly in dynamic aquatic ecosystems. Diatoms are important eukaryotic phytoplankton that thrive in regions of pulsed phosphate supply, yet little is known of the sensory mechanisms enabling them to detect and rapidly respond to phosphorus availability. Here we show that phosphorus-starved diatoms utilise a novel Ca2+-dependent signalling pathway to sense and regulate cellular recovery following phosphorus resupply. This pathway, which has not previously been described in eukaryotes, is sensitive to sub-micromolar concentrations of phosphate, alongside a range of environmentally relevant phosphorus forms. Using comparative proteomics, we have characterised early adaptations governing diatom cellular recovery from phosphorus limitation. Strikingly, the dominant response was substantial enhancement of nitrogen assimilation proteins. This led to 12-fold increases in absolute nitrate uptake rates, relative to phosphorus-starved cells. Moreover, we find that the novel phosphorus-Ca2+ signalling pathway controls this primary recovery response. Our findings highlight that fundamental cross-talk between the essential nutrients phosphorus and nitrogen drive diatom recovery from phosphorus limitation. Moreover, a novel Ca2+-dependent phosphorus signalling pathway governs such ecological acclimation responses, and is thus likely critical to the success of diatoms in regions of episodic nutrient supply.